Ontology highlight
ABSTRACT: Importance
Cells contain pathways that promote or inhibit recombination. MutS2 homologs are Smr-endonuclease domain-containing proteins that have been shown to function in antirecombination in some bacteria. We present evidence that B. subtilis MutS2 promotes recombination, providing a new function for MutS2. We found that cells lacking mutS2 are sensitive to DNA damage that requires homologous recombination for repair and have reduced transformation efficiency. Further analysis indicates that the C-terminal Smr domain requires the N-terminal portion of MutS2 for function in vivo Moreover, we show that a mutS2 deletion is additive with a recU deletion, suggesting that these proteins have a redundant function in homologous recombination. Together, our study shows that MutS2 proteins have adapted different functions that impact recombination.
SUBMITTER: Burby PE
PROVIDER: S-EPMC5198493 | biostudies-literature | 2017 Jan
REPOSITORIES: biostudies-literature
Journal of bacteriology 20161228 2
Bacterial MutS proteins are subdivided into two families, MutS1 and MutS2. MutS1 family members recognize DNA replication errors during their participation in the well-characterized mismatch repair (MMR) pathway. In contrast to the well-described function of MutS1, the function of MutS2 in bacteria has remained less clear. In Helicobacter pylori and Thermus thermophilus, MutS2 has been shown to suppress homologous recombination. The role of MutS2 is unknown in the Gram-positive bacterium Bacillu ...[more]