Unknown

Dataset Information

0

The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes.


ABSTRACT: We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

SUBMITTER: Himbert S 

PROVIDER: S-EPMC5206716 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes.

Himbert Sebastian S   Alsop Richard J RJ   Rose Markus M   Hertz Laura L   Dhaliwal Alexander A   Moran-Mirabal Jose M JM   Verschoor Chris P CP   Bowdish Dawn M E DM   Kaestner Lars L   Wagner Christian C   Rheinstädter Maikel C MC  

Scientific reports 20170103


We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as  ...[more]

Similar Datasets

| S-EPMC2711365 | biostudies-literature
| S-EPMC1366779 | biostudies-literature
| S-EPMC3721505 | biostudies-literature
| S-EPMC6381104 | biostudies-literature
| S-EPMC5813967 | biostudies-literature
| S-EPMC7643874 | biostudies-literature
| S-EPMC5570996 | biostudies-literature
| S-EPMC8442935 | biostudies-literature
| S-EPMC5512905 | biostudies-other
| S-EPMC8804297 | biostudies-literature