Unknown

Dataset Information

0

Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment.


ABSTRACT: Spinal cord injury (SCI) triggers a heterogeneous macrophage response that when experimentally polarized toward alternative forms of activation (M2 macrophages) promotes tissue and functional recovery. There are limited pharmacological therapies that can drive this reparative inflammatory state. In the current study, we used in vitro systems to comprehensively defined markers of macrophages with known pathological (M1) and reparative (M2) properties in SCI. We then used these markers to objectively define the macrophage activation states after SCI in response to delayed azithromycin treatment. Mice were subjected to moderate-severe thoracic contusion SCI. Azithromycin or vehicle was administered beginning 30?minutes post-SCI and then daily for 3 or 7 days post injury (dpi). We detected a dose-dependent polarization toward purportedly protective M2 macrophages with daily AZM treatment. Specifically, AZM doses of 10, 40, or 160?mg/kg decreased M1 macrophage gene expression at 3?dpi while the lowest (10?mg/kg) and highest (160?mg/kg) doses increased M2 macrophage gene expression at 7?dpi. Azithromycin has documented immunomodulatory properties and is commonly prescribed to treat infections in SCI individuals. This work demonstrates the utility of objective, comprehensive macrophage gene profiling for evaluating immunomodulatory SCI therapies and highlights azithromycin as a promising agent for SCI treatment.

SUBMITTER: Gensel JC 

PROVIDER: S-EPMC5216345 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment.

Gensel John C JC   Kopper Timothy J TJ   Zhang Bei B   Orr Michael B MB   Bailey William M WM  

Scientific reports 20170106


Spinal cord injury (SCI) triggers a heterogeneous macrophage response that when experimentally polarized toward alternative forms of activation (M2 macrophages) promotes tissue and functional recovery. There are limited pharmacological therapies that can drive this reparative inflammatory state. In the current study, we used in vitro systems to comprehensively defined markers of macrophages with known pathological (M1) and reparative (M2) properties in SCI. We then used these markers to objectiv  ...[more]

Similar Datasets

| S-EPMC5833847 | biostudies-literature
| S-EPMC4312192 | biostudies-literature
| S-EPMC4689374 | biostudies-literature
| S-EPMC6965870 | biostudies-literature
| S-EPMC5915167 | biostudies-literature
| S-EPMC5749801 | biostudies-literature
| S-EPMC4115271 | biostudies-literature
| S-EPMC8211642 | biostudies-literature
| S-EPMC4836698 | biostudies-literature
| S-EPMC6886583 | biostudies-literature