Unknown

Dataset Information

0

Regulation of FADS2 transcription by SREBP-1 and PPAR-? influences LC-PUFA biosynthesis in fish.


ABSTRACT: The present study was conducted to explore the mechanisms leading to differences among fishes in the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFAs). Replacement of fish oil with vegetable oil caused varied degrees of increase in 18-carbon fatty acid content and decrease in n-3 LC-PUFA content in the muscle and liver of rainbow trout (Oncorhynchus mykiss), Japanese seabass (Lateolabrax japonicus) and large yellow croaker (Larimichthys crocea), suggesting that these fishes have differing abilities to biosynthesize LC-PUFAs. Fish oil replacement also led to significantly up-regulated expression of FADS2 and SREBP-1 but different responses of the two PPAR-? homologues in the livers of these three fishes. An in vitro experiment indicated that the basic transcription activity of the FADS2 promoter was significantly higher in rainbow trout than in Japanese seabass or large yellow croaker, which was consistent with their LC-PUFA biosynthetic abilities. In addition, SREBP-1 and PPAR-? up-regulated FADS2 promoter activity. These regulatory effects varied considerably between SREBP-1 and PPAR-?, as well as among the three fishes. Taken together, the differences in regulatory activities of the two transcription factors targeting FADS2 may be responsible for the different LC-PUFA biosynthetic abilities in these three fishes that have adapted to different ambient salinity.

SUBMITTER: Dong X 

PROVIDER: S-EPMC5220380 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regulation of FADS2 transcription by SREBP-1 and PPAR-α influences LC-PUFA biosynthesis in fish.

Dong Xiaojing X   Tan Peng P   Cai Zuonan Z   Xu Hanlin H   Li Jingqi J   Ren Wei W   Xu Houguo H   Zuo Rantao R   Zhou Jianfeng J   Mai Kangsen K   Ai Qinghui Q  

Scientific reports 20170109


The present study was conducted to explore the mechanisms leading to differences among fishes in the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFAs). Replacement of fish oil with vegetable oil caused varied degrees of increase in 18-carbon fatty acid content and decrease in n-3 LC-PUFA content in the muscle and liver of rainbow trout (Oncorhynchus mykiss), Japanese seabass (Lateolabrax japonicus) and large yellow croaker (Larimichthys crocea), suggesting that these fis  ...[more]

Similar Datasets

| S-EPMC3588878 | biostudies-literature
| S-EPMC7326293 | biostudies-literature
| S-EPMC3909213 | biostudies-literature
| S-EPMC6214118 | biostudies-literature
| S-EPMC5027541 | biostudies-literature
| S-EPMC6829471 | biostudies-literature
| S-EPMC6423087 | biostudies-literature
| S-EPMC8833367 | biostudies-literature
| S-EPMC5495269 | biostudies-literature
| S-EPMC9139026 | biostudies-literature