Unknown

Dataset Information

0

The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer.


ABSTRACT: Tumor cells develop drug resistance which leads to recurrence and distant metastasis. MicroRNAs are key regulators of tumor pathogenesis; however, little is known whether they can sensitize cells and block metastasis simultaneously. Here, we report miR-644a as a novel inhibitor of both cell survival and EMT whereby acting as pleiotropic therapy-sensitizer in breast cancer. We showed that both miR-644a expression and its gene signature are associated with tumor progression and distant metastasis-free survival. Mechanistically, miR-644a directly targets the transcriptional co-repressor C-Terminal Binding Protein 1 (CTBP1) whose knock-outs by the CRISPR-Cas9 system inhibit tumor growth, metastasis, and drug resistance, mimicking the phenotypes induced by miR-644a. Furthermore, downregulation of CTBP1 by miR-644a upregulates wild type- or mutant-p53 which acts as a 'molecular switch' between G1-arrest and apoptosis by inducing cyclin-dependent kinase inhibitor 1 (p21, CDKN1A, CIP1) or pro-apoptotic phorbol-12-myristate-13-acetate-induced protein 1 (Noxa, PMAIP1), respectively. Interestingly, an increase in mutant-p53 by either overexpression of miR-644a or downregulation of CTBP1 was enough to shift this balance in favor of apoptosis through upregulation of Noxa. Notably, p53-mutant patients, but not p53-wild type ones, with high CTBP1 have a shorter survival suggesting that CTBP1 could be a potential prognostic factor for breast cancer patients with p53 mutations. Overall, re-activation of the miR-644a/CTBP1/p53 axis may represent a new strategy for overcoming both therapy resistance and metastasis.

SUBMITTER: Raza U 

PROVIDER: S-EPMC5226553 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer.

Raza Umar U   Saatci Özge Ö   Uhlmann Stefan S   Ansari Suhail A SA   Eyüpoğlu Erol E   Yurdusev Emre E   Mutlu Merve M   Ersan Pelin Gülizar PG   Altundağ Mustafa Kadri MK   Zhang Jitao David JD   Doğan Hayriye Tatlı HT   Güler Gülnur G   Şahin Özgür Ö  

Oncotarget 20160801 31


Tumor cells develop drug resistance which leads to recurrence and distant metastasis. MicroRNAs are key regulators of tumor pathogenesis; however, little is known whether they can sensitize cells and block metastasis simultaneously. Here, we report miR-644a as a novel inhibitor of both cell survival and EMT whereby acting as pleiotropic therapy-sensitizer in breast cancer. We showed that both miR-644a expression and its gene signature are associated with tumor progression and distant metastasis-  ...[more]

Similar Datasets

| S-EPMC7921430 | biostudies-literature
| S-EPMC3705163 | biostudies-literature
| S-EPMC6959051 | biostudies-literature
| S-EPMC5514467 | biostudies-literature
| S-EPMC6590035 | biostudies-literature
| S-EPMC3206336 | biostudies-literature
| S-EPMC3595239 | biostudies-literature
| S-EPMC3937226 | biostudies-literature
| S-EPMC7680796 | biostudies-literature
| S-EPMC5471004 | biostudies-literature