Unknown

Dataset Information

0

High-Valent Manganese-Oxo Valence Tautomers and the Influence of Lewis/Bronsted Acids on C-H Bond Cleavage.


ABSTRACT: The addition of Lewis or Brönsted acids (LA = Zn(OTf)2, B(C6F5)3, HBArF, TFA) to the high-valent manganese-oxo complex MnV(O)(TBP8Cz) results in the stabilization of a valence tautomer MnIV(O-LA)(TBP8Cz•+). The ZnII and B(C6F5)3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn-Nave = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn-O bond length is elongated compared to the MnV(O) starting material (Mn-O = 1.55 Å). The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C-H substrates was examined, and it was found that H• abstraction from C-H bonds occurs in a 1:1 stoichiometry, giving a MnIV complex and the dehydrogenated organic product. The rates of C-H cleavage are accelerated for the MnIV(O-LA)(TBP8Cz•+) valence tautomer as compared to the MnV(O) valence tautomer when LA = ZnII, B(C6F5)3, and HBArF, whereas for LA = TFA, the C-H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of kH/kD = 25-27 was observed for LA = B(C6F5)3 and HBArF, indicating that H-atom transfer (HAT) is the rate-limiting step in the C-H cleavage reaction and implicating a potential tunneling mechanism for HAT. The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C-H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex MnIV(O-H)(tpfc•+) recently reported (J. Am. Chem. Soc. 2015, 137, 14481-14487).

SUBMITTER: Baglia RA 

PROVIDER: S-EPMC5228481 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-Valent Manganese-Oxo Valence Tautomers and the Influence of Lewis/Brönsted Acids on C-H Bond Cleavage.

Baglia Regina A RA   Krest Courtney M CM   Yang Tzuhsiung T   Leeladee Pannee P   Goldberg David P DP  

Inorganic chemistry 20160930 20


The addition of Lewis or Brönsted acids (LA = Zn(OTf)<sub>2</sub>, B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, HBAr<sup>F</sup>, TFA) to the high-valent manganese-oxo complex Mn<sup>V</sup>(O)(TBP<sub>8</sub>Cz) results in the stabilization of a valence tautomer Mn<sup>IV</sup>(O-LA)(TBP<sub>8</sub>Cz<sup>•+</sup>). The Zn<sup>II</sup> and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energi  ...[more]

Similar Datasets

| S-EPMC5167333 | biostudies-literature
| S-EPMC4066901 | biostudies-other
| S-EPMC5955611 | biostudies-literature
| S-EPMC6734939 | biostudies-literature
| S-EPMC5633839 | biostudies-other
| S-EPMC7176486 | biostudies-literature
| S-EPMC8411943 | biostudies-literature
| S-EPMC6115684 | biostudies-other
| S-EPMC5531755 | biostudies-literature
| S-EPMC20922 | biostudies-other