Unknown

Dataset Information

0

Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector.


ABSTRACT: Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. IMPORTANCE:Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others.

SUBMITTER: Durand J 

PROVIDER: S-EPMC5244308 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector.

Durand Jonas J   Herrmann Coralie C   Genné Dolores D   Sarr Anouk A   Gern Lise L   Voordouw Maarten J MJ  

Applied and environmental microbiology 20170117 3


Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne  ...[more]

Similar Datasets

| S-EPMC3837742 | biostudies-literature
| S-EPMC8675256 | biostudies-literature
| S-EPMC7171238 | biostudies-literature
| S-EPMC5524385 | biostudies-literature
| S-EPMC3352467 | biostudies-literature
| S-EPMC4748124 | biostudies-literature
| S-EPMC5547811 | biostudies-literature
| S-EPMC3298309 | biostudies-literature
| S-EPMC4592300 | biostudies-literature
| S-EPMC5657863 | biostudies-literature