Performance of toxicity probability interval based designs in contrast to the continual reassessment method.
Ontology highlight
ABSTRACT: Toxicity probability interval designs have received increasing attention as a dose-finding method in recent years. In this study, we compared the two-stage, likelihood-based continual reassessment method (CRM), modified toxicity probability interval (mTPI), and the Bayesian optimal interval design (BOIN) in order to evaluate each method's performance in dose selection for phase I trials. We use several summary measures to compare the performance of these methods, including percentage of correct selection (PCS) of the true maximum tolerable dose (MTD), allocation of patients to doses at and around the true MTD, and an accuracy index. This index is an efficiency measure that describes the entire distribution of MTD selection and patient allocation by taking into account the distance between the true probability of toxicity at each dose level and the target toxicity rate. The simulation study considered a broad range of toxicity curves and various sample sizes. When considering PCS, we found that CRM outperformed the two competing methods in most scenarios, followed by BOIN, then mTPI. We observed a similar trend when considering the accuracy index for dose allocation, where CRM most often outperformed both mTPI and BOIN. These trends were more pronounced with increasing number of dose levels. Copyright © 2016 John Wiley & Sons, Ltd.
SUBMITTER: Horton BJ
PROVIDER: S-EPMC5267938 | biostudies-literature | 2017 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA