Unknown

Dataset Information

0

Serine/threonine phosphatases and aquaporin-2 regulation in renal collecting duct.


ABSTRACT: Phosphorylation of the aquaporin-2 (AQP2) water channel at four COOH-terminal serines plays a central role in the regulation of water permeability of the renal collecting duct. The level of phosphorylation at these sites is determined by a balance between phosphorylation by protein kinases and dephosphorylation by phosphatases. The phosphatases that dephosphorylate AQP2 have not been identified. Here, we use large-scale data integration techniques to identify serine-threonine phosphatases likely to interact with AQP2 in renal collecting duct principal cells. As a first step, we have created a comprehensive list of 38 S/T phosphatase catalytic subunits present in the mammalian genome. Then we used Bayes' theorem to integrate available information from large-scale data sets from proteomic and transcriptomic studies to rank the known S/T phosphatases with regard to the likelihood that they interact with AQP2 in renal collecting duct cells. To broaden the analysis, we have generated new proteomic data (LC-MS/MS) identifying 4538 distinct proteins including 22 S/T phosphatases in cytoplasmic fractions from native inner medullary collecting duct cells from rats. The official gene symbols corresponding to the top-ranked phosphatases (common names in parentheses) were: Ppp1cb (PP1-?), Ppm1g (PP2C), Ppp1ca (PP1-?), Ppp3ca (PP2-B or calcineurin), Ppp2ca (PP2A-?), Ppp1cc (PP1-?), Ppp2cb (PP2A-?), Ppp6c (PP6C), and Ppp5c (PP5). This ranking correlates well with results of prior reductionist studies of ion and water channels in renal collecting duct cells.

SUBMITTER: LeMaire SM 

PROVIDER: S-EPMC5283887 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Serine/threonine phosphatases and aquaporin-2 regulation in renal collecting duct.

LeMaire Sophia M SM   Raghuram Viswanathan V   Grady Cameron R CR   Pickering Christina M CM   Chou Chung-Lin CL   Umejiego Ezigbobiara N EN   Knepper Mark A MA  

American journal of physiology. Renal physiology 20161026 1


Phosphorylation of the aquaporin-2 (AQP2) water channel at four COOH-terminal serines plays a central role in the regulation of water permeability of the renal collecting duct. The level of phosphorylation at these sites is determined by a balance between phosphorylation by protein kinases and dephosphorylation by phosphatases. The phosphatases that dephosphorylate AQP2 have not been identified. Here, we use large-scale data integration techniques to identify serine-threonine phosphatases likely  ...[more]

Similar Datasets

2018-10-26 | PXD005488 | Pride
| S-EPMC5346472 | biostudies-literature
| S-EPMC3502047 | biostudies-literature
| S-EPMC1435688 | biostudies-literature
| S-EPMC6493977 | biostudies-literature
| S-EPMC4163143 | biostudies-literature
2024-09-30 | GSE274937 | GEO
| S-EPMC3063355 | biostudies-literature
| S-EPMC1223558 | biostudies-literature
| S-EPMC294077 | biostudies-other