Unknown

Dataset Information

0

Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles.


ABSTRACT: We present a systematic study of core-shell Au/Fe3O4 nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of d?=?(6.9?±?1.0) nm surrounded by Fe3O4 shell with a thickness of ~3.5?nm, epitaxially grown onto the Au core surface. The Au/Fe3O4 core-shell structure was demonstrated by high angle annular dark field scanning transmission electron microscopy analysis. The magnetite shell grown on top of the Au nanoparticle displayed a thermal blocking state at temperatures below TB?=?59?K and a relaxed state well above TB. Remarkably, an exchange bias effect was observed when cooling down the samples below room temperature under an external magnetic field. Moreover, the exchange bias field (HEX) started to appear at T~40?K and its value increased by decreasing the temperature. This effect has been assigned to the interaction of spins located in the magnetically disordered regions (in the inner and outer surface of the Fe3O4 shell) and spins located in the ordered region of the Fe3O4 shell.

SUBMITTER: Leon Felix L 

PROVIDER: S-EPMC5292710 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural and magnetic properties of core-shell Au/Fe<sub>3</sub>O<sub>4</sub> nanoparticles.

León Félix L L   Coaquira J A H JA   Martínez M A R MA   Goya G F GF   Mantilla J J   Sousa M H MH   Valladares L de Los Santos LL   Barnes C H W CH   Morais P C PC  

Scientific reports 20170206


We present a systematic study of core-shell Au/Fe<sub>3</sub>O<sub>4</sub> nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of d = (6.9 ± 1.0) nm surrounded by Fe<sub>3</sub>O<sub>4</sub> shell with a thickness of ~3.5 nm, epitaxially grown onto the Au core surface. The Au/Fe<sub>3</sub>O<sub>4</sub> core-shell structure was demonstrated by high angle annular dark field scanning trans  ...[more]

Similar Datasets

| S-EPMC9417649 | biostudies-literature
| S-EPMC9064591 | biostudies-literature
| S-EPMC5453067 | biostudies-other
| S-EPMC7280462 | biostudies-literature
| S-EPMC9048804 | biostudies-literature
| S-EPMC3918467 | biostudies-literature
| S-EPMC4397535 | biostudies-other
| S-EPMC6358969 | biostudies-other
| S-EPMC4108303 | biostudies-literature
| S-EPMC5278371 | biostudies-literature