Cytokine Imbalance as a Common Mechanism in Both Psoriasis and Rheumatoid Arthritis.
Ontology highlight
ABSTRACT: Psoriasis (PS) and rheumatoid arthritis (RA) are immune-mediated inflammatory diseases. Previous studies showed that these two diseases had a common pathogenesis, but the precise molecular mechanism remains unclear. In this study, RNA sequencing of peripheral blood mononuclear cells was employed to explore both the differentially expressed genes (DEGs) of 10 PS and 10 RA patients compared with those of 10 healthy volunteers and the shared DEGs between these two diseases. Bioinformatics network analysis was used to reveal the connections among the shared DEGs and the corresponding molecular mechanism. In total, 120 and 212 DEGs were identified in PS and RA, respectively, and 31 shared DEGs were identified. Bioinformatics analysis indicated that the cytokine imbalance relevant to key molecules (such as extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor (TNF), colony-stimulating factor 3 (CSF3), interleukin- (IL-) 6, and interferon gene (IFNG)) and canonical signaling pathways (such as the complement system, antigen presentation, macropinocytosis signaling, nuclear factor-kappa B (NF-?B) signaling, and IL-17 signaling) was responsible for the common comprehensive mechanism of PS and RA. Our findings provide a better understanding of the pathogenesis of PS and RA, suggesting potential strategies for treating and preventing both diseases. This study may also provide a new paradigm for illuminating the common pathogenesis of different diseases.
SUBMITTER: Tan Y
PROVIDER: S-EPMC5296610 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
ACCESS DATA