Unknown

Dataset Information

0

State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling.


ABSTRACT: Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

SUBMITTER: Dome Fuji Ice Core Project Members: 

PROVIDER: S-EPMC5298857 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling.

Kawamura Kenji K   Abe-Ouchi Ayako A   Motoyama Hideaki H   Ageta Yutaka Y   Aoki Shuji S   Azuma Nobuhiko N   Fujii Yoshiyuki Y   Fujita Koji K   Fujita Shuji S   Fukui Kotaro K   Furukawa Teruo T   Furusaki Atsushi A   Goto-Azuma Kumiko K   Greve Ralf R   Hirabayashi Motohiro M   Hondoh Takeo T   Hori Akira A   Horikawa Shinichiro S   Horiuchi Kazuho K   Igarashi Makoto M   Iizuka Yoshinori Y   Kameda Takao T   Kanda Hiroshi H   Kohno Mika M   Kuramoto Takayuki T   Matsushi Yuki Y   Miyahara Morihiro M   Miyake Takayuki T   Miyamoto Atsushi A   Nagashima Yasuo Y   Nakayama Yoshiki Y   Nakazawa Takakiyo T   Nakazawa Fumio F   Nishio Fumihiko F   Obinata Ichio I   Ohgaito Rumi R   Oka Akira A   Okuno Jun'ichi J   Okuyama Junichi J   Oyabu Ikumi I   Parrenin Frédéric F   Pattyn Frank F   Saito Fuyuki F   Saito Takashi T   Saito Takeshi T   Sakurai Toshimitsu T   Sasa Kimikazu K   Seddik Hakime H   Shibata Yasuyuki Y   Shinbori Kunio K   Suzuki Keisuke K   Suzuki Toshitaka T   Takahashi Akiyoshi A   Takahashi Kunio K   Takahashi Shuhei S   Takata Morimasa M   Tanaka Yoichi Y   Uemura Ryu R   Watanabe Genta G   Watanabe Okitsugu O   Yamasaki Tetsuhide T   Yokoyama Kotaro K   Yoshimori Masakazu M   Yoshimoto Takayasu T  

Science advances 20170208 2


Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record fro  ...[more]

Similar Datasets

| S-EPMC6063862 | biostudies-literature
| S-EPMC4844970 | biostudies-literature
| S-EPMC11295081 | biostudies-literature
| S-EPMC9802080 | biostudies-literature
| S-EPMC5893564 | biostudies-literature
| S-EPMC6584665 | biostudies-literature
| S-EPMC11691690 | biostudies-literature
| S-EPMC5951810 | biostudies-literature
| S-EPMC10962970 | biostudies-literature
| S-EPMC2848609 | biostudies-literature