Unknown

Dataset Information

0

Model evidence for a seasonal bias in Antarctic ice cores.


ABSTRACT: Much of the global annual mean temperature change over Quaternary glacial cycles can be attributed to slow ice sheet and greenhouse gas feedbacks, but analysis of the short-term response to orbital forcings has the potential to reveal key relationships in the climate system. In particular, obliquity and precession both produce highly seasonal temperature responses at high latitudes. Here, idealized single-forcing model experiments are used to quantify Earth's response to obliquity, precession, CO2, and ice sheets, and a linear reconstruction methodology is used to compare these responses to long proxy records around the globe. This comparison reveals mismatches between the annual mean response to obliquity and precession in models versus the signals within Antarctic ice cores. Weighting the model-based reconstruction toward austral winter or spring reduces these discrepancies, providing evidence for a seasonal bias in ice cores.

SUBMITTER: Erb MP 

PROVIDER: S-EPMC5893564 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Model evidence for a seasonal bias in Antarctic ice cores.

Erb Michael P MP   Jackson Charles S CS   Broccoli Anthony J AJ   Lea David W DW   Valdes Paul J PJ   Crucifix Michel M   DiNezio Pedro N PN  

Nature communications 20180410 1


Much of the global annual mean temperature change over Quaternary glacial cycles can be attributed to slow ice sheet and greenhouse gas feedbacks, but analysis of the short-term response to orbital forcings has the potential to reveal key relationships in the climate system. In particular, obliquity and precession both produce highly seasonal temperature responses at high latitudes. Here, idealized single-forcing model experiments are used to quantify Earth's response to obliquity, precession, C  ...[more]

Similar Datasets

| S-EPMC5298857 | biostudies-literature
| S-EPMC4421805 | biostudies-other
| S-EPMC6052068 | biostudies-other
| S-EPMC9931235 | biostudies-literature
| S-EPMC5597626 | biostudies-literature
| S-EPMC5557900 | biostudies-other
| S-EPMC7887216 | biostudies-literature
| S-EPMC4078843 | biostudies-other
| S-EPMC5519555 | biostudies-literature
| S-EPMC4742833 | biostudies-literature