Unknown

Dataset Information

0

Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues.


ABSTRACT: We investigated whether the developmental stage of mouse cardiac fibroblasts (CFs) influences the formation and function of engineered cardiac tissues made of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Engineered cardiac tissue patches were fabricated by encapsulating pure mESC-CMs, mESC-CMs?+?adult CFs, or mESC-CMs?+?fetal CFs in fibrin-based hydrogel. Tissue patches containing fetal CFs exhibited higher velocity of action potential propagation and contractile force amplitude compared to patches containing adult CFs, while pure mESC-CM patches did not form functional syncytium. The functional improvements in mESC-CM?+?fetal CF patches were associated with differences in structural remodeling and increased expression of proteins involved in cardiac function. To determine role of paracrine signaling, we cultured pure mESC-CMs within miniature tissue "micro-patches" supplemented with media conditioned by adult or fetal CFs. Fetal CF-conditioned media distinctly enhanced CM spreading and contractile activity, which was shown by pathway inhibitor experiments and Western blot analysis to be mediated via MEK-ERK signaling. In mESC-CM monolayers, CF-conditioned media did not alter CM spreading or MEK-ERK activation. Collectively, our studies show that 3D co-culture of mESC-CMs with embryonic CFs is superior to co-culture with adult CFs for in vitro generation of functional myocardium. Ensuring consistent developmental stages of cardiomyocytes and supporting non-myocytes may be a critical factor for promoting functional maturation of engineered cardiac tissues.

SUBMITTER: Liau B 

PROVIDER: S-EPMC5299411 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues.

Liau Brian B   Jackman Christopher P CP   Li Yanzhen Y   Bursac Nenad N  

Scientific reports 20170209


We investigated whether the developmental stage of mouse cardiac fibroblasts (CFs) influences the formation and function of engineered cardiac tissues made of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Engineered cardiac tissue patches were fabricated by encapsulating pure mESC-CMs, mESC-CMs + adult CFs, or mESC-CMs + fetal CFs in fibrin-based hydrogel. Tissue patches containing fetal CFs exhibited higher velocity of action potential propagation and contractile force amplitude  ...[more]

Similar Datasets

| S-EPMC8349112 | biostudies-literature
| S-EPMC6894319 | biostudies-literature
| S-EPMC6522495 | biostudies-literature
| S-EPMC7872211 | biostudies-literature
| S-EPMC11058244 | biostudies-literature
| S-EPMC5509073 | biostudies-literature
| S-EPMC3397121 | biostudies-literature
| S-EPMC7763394 | biostudies-literature
| S-EPMC5743464 | biostudies-literature
| S-EPMC5874032 | biostudies-literature