Unknown

Dataset Information

0

Climate, intrinsic water-use efficiency and tree growth over the past 150 years in humid subtropical China.


ABSTRACT: Influence of long-term changes in climate and CO2 concentration on intrinsic water-use efficiency (iWUE), defined as the ratio between net photosynthesis (A) and leaf conductance (g), and tree growth remain not fully revealed in humid subtropical China, which is distinct from other arid subtropical areas with dense coverage of broadleaf forests. This study presented the first tree-ring stable carbon isotope (?13C) and iWUE series of Pinus massoniana from 1865 to 2013 in Fujian province, humid subtropical China, and the first tree-ring width standard chronology during the period of 1836-2013 for the Niumulin Nature Reserve (NML). Tree-ring width growth was limited by precipitation in July-August (r = 0.40, p < 0.01). The tree-ring carbon isotope discrimination (?13C) was mainly controlled by the sunshine hours (r = -0.66, p < 0.001) and relative humidity (r = 0.58, p < 0.001) in September-October, a season with rapid latewood formation in this area. The iWUE increased by 42.6% and the atmospheric CO2 concentration (ca) explained 92.6% of the iWUE variance over the last 150 years. The steady increase in iWUE suggests an active response with a proportional increase in intercellular CO2 concentration (ci) in response to increase in ca. The contribution of iWUE to tree growth in the study region is not conspicuous, which points to influences of other factors such as climate.

SUBMITTER: Li D 

PROVIDER: S-EPMC5300276 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Climate, intrinsic water-use efficiency and tree growth over the past 150 years in humid subtropical China.

Li Dawen D   Fang Keyan K   Li Yingjun Y   Chen Deliang D   Liu Xiaohong X   Dong Zhipeng Z   Zhou Feifei F   Guo Guoyang G   Shi Feng F   Xu Chenxi C   Li Yanping Y  

PloS one 20170209 2


Influence of long-term changes in climate and CO2 concentration on intrinsic water-use efficiency (iWUE), defined as the ratio between net photosynthesis (A) and leaf conductance (g), and tree growth remain not fully revealed in humid subtropical China, which is distinct from other arid subtropical areas with dense coverage of broadleaf forests. This study presented the first tree-ring stable carbon isotope (δ13C) and iWUE series of Pinus massoniana from 1865 to 2013 in Fujian province, humid su  ...[more]

Similar Datasets

| S-EPMC8639808 | biostudies-literature
| S-EPMC10491769 | biostudies-literature
| S-EPMC5974183 | biostudies-literature
| S-EPMC4707497 | biostudies-literature
| S-EPMC2848609 | biostudies-literature
| S-EPMC4224528 | biostudies-literature
| S-EPMC4844970 | biostudies-literature
| S-EPMC6815162 | biostudies-literature
| S-EPMC4554991 | biostudies-literature
| S-EPMC5762867 | biostudies-literature