T-cell epitope strength in WAP-T mouse mammary carcinomas is an important determinant in PD1/PD-L1 immune checkpoint blockade therapy.
Ontology highlight
ABSTRACT: Using the SV40 transgenic WAP-T/WAP-TNP mouse models for mammary carcinomas, we compared the response to immune checkpoint blockade therapy in tumor mice expressing either SV40 T-antigen containing the LCMV NP-epitope (T-AgNP in WAP-TNP mice), or the unmodified T-antigen (T-Ag in WAP-T mice). Specifically, we asked, whether the presence of the highly immunogenic NP-epitope in T-AgNP influences this response in comparison to the weakly immunogenic T-cell epitopes of T-Ag in WAP-T tumor mice. Treatment of WAP-TNP tumor mice with either anti-PD1 or anti-PD-L1 antibodies led to tumor regression, with anti-PD-L1 treatment being more effective. However, tumors had fully re-appeared after 21 days, indicating that CTL exhaustion had been rapidly re-established. Surprisingly, the same treatment applied to WAP-T tumor mice resulted in a significantly prolonged period of tumor regression. We provide evidence that in contrast to the weak antigenic stimuli exerted by T-cell epitopes of T-Ag, the strong antigenic stimulus of the NP-epitope in T-AgNP has a dual effect: (i) a rapid generation of active NP-specific CTLs, accompanied (ii) by accelerated CTL exhaustion. Our data support the hypothesis that the immunogenicity of tumor antigen T-cell epitopes strongly influences the success of immune checkpoint blockade therapy.
SUBMITTER: Bruns M
PROVIDER: S-EPMC5323098 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA