Unknown

Dataset Information

0

A smart sealed nucleic acid biosensor based on endogenous reference gene detection to screen and identify mammals on site.


ABSTRACT: The identification of meat adulteration is a hotspot for food research worldwide. In this paper, a smart and sealed biosensor that combines loop-mediated isothermal amplification (LAMP) with a lateral flow device (LFD) was developed, resulting in the universal mammalian assessment on site. First, the highly specific chromosomal Glucagon gene (Gcg) was chosen as the endogenous reference gene, and the LAMP approach provided double-labeled duplex DNA products using FITC- and BIO- modified primers. Then, an LFD strategy was used for specific signal recognition through an immunoassay. Meanwhile, LFD-LAMP was compared to LAMP and real-time LAMP, the results showed consistent high specificity and sensitivity but in a more convenient and easy-to-use system. In addition, the detection limit was as low as 10?pg, which was equivalent to 3~5 copies in mammals. All of the reactions were performed in a sealed system regardless of the amplification process or products recognized. Therefore, the smart design demonstrated significantly high specificity and the ability to detect trace amounts of DNA in complex and processed foods with mammalian meat. As a universal and specific platform for the detection of mammalian DNA, this smart biosensor is an excellent prospect for species identification and meat adulteration.

SUBMITTER: Xu Y 

PROVIDER: S-EPMC5324065 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

A smart sealed nucleic acid biosensor based on endogenous reference gene detection to screen and identify mammals on site.

Xu Yuancong Y   Xiang Wenjin W   Wang Qin Q   Cheng Nan N   Zhang Li L   Huang Kunlun K   Xu Wentao W  

Scientific reports 20170224


The identification of meat adulteration is a hotspot for food research worldwide. In this paper, a smart and sealed biosensor that combines loop-mediated isothermal amplification (LAMP) with a lateral flow device (LFD) was developed, resulting in the universal mammalian assessment on site. First, the highly specific chromosomal Glucagon gene (Gcg) was chosen as the endogenous reference gene, and the LAMP approach provided double-labeled duplex DNA products using FITC- and BIO- modified primers.  ...[more]

Similar Datasets

| S-EPMC1265936 | biostudies-literature
| S-EPMC2657741 | biostudies-literature
| S-EPMC9855345 | biostudies-literature
| S-EPMC4542615 | biostudies-other
| S-EPMC6868134 | biostudies-literature
| S-EPMC4976068 | biostudies-literature
| S-EPMC6366067 | biostudies-literature
| S-EPMC4110901 | biostudies-literature
| S-EPMC8309715 | biostudies-literature
| S-EPMC5714256 | biostudies-literature