Unknown

Dataset Information

0

Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt).


ABSTRACT: Activating the plasticity of ZrB2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB2, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B ? orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB2 based materials, especially for improving their mechanical properties.

SUBMITTER: Dai FZ 

PROVIDER: S-EPMC5324072 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reducing the Ideal Shear Strengths of ZrB<sub>2</sub> by High Efficient Alloying Elements (Ag, Au, Pd and Pt).

Dai Fu-Zhi FZ   Zhou Yanchun Y  

Scientific reports 20170224


Activating the plasticity of ZrB<sub>2</sub> is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB<sub>2</sub>, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB<sub>2</sub> reveals that  ...[more]

Similar Datasets

| S-EPMC7822900 | biostudies-literature
| S-EPMC3236240 | biostudies-literature
| S-EPMC7858706 | biostudies-literature
| S-EPMC8746481 | biostudies-literature
| S-EPMC6696002 | biostudies-literature