Unknown

Dataset Information

0

Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.


ABSTRACT: Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA.

SUBMITTER: Gaitan-Espitia JD 

PROVIDER: S-EPMC5326508 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.

Gaitán-Espitia Juan Diego JD   Marshall Dustin D   Dupont Sam S   Bacigalupe Leonardo D LD   Bodrossy Levente L   Hobday Alistair J AJ  

Biology letters 20170201 2


Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO<sub>2</sub> variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong  ...[more]

Similar Datasets

| S-EPMC5326514 | biostudies-literature
| S-EPMC3637708 | biostudies-literature
2024-08-26 | GSE182928 | GEO
| S-EPMC5377027 | biostudies-literature
| S-EPMC4731747 | biostudies-literature
| S-EPMC3153472 | biostudies-literature
| S-EPMC4408146 | biostudies-other
2014-05-02 | GSE57171 | GEO
| S-EPMC5740286 | biostudies-literature
| S-EPMC3625171 | biostudies-literature