Unknown

Dataset Information

0

A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction.


ABSTRACT: The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials' high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC5327468 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction.

Zhang Yaqing Y   Zhang Xianlei X   Ma Xiuxiu X   Guo Wenhui W   Wang Chunchi C   Asefa Tewodros T   He Xingquan X  

Scientific reports 20170227


The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials' high-efficiency as electrocatal  ...[more]

Similar Datasets

| S-EPMC8778313 | biostudies-literature
| S-EPMC8456144 | biostudies-literature
| S-EPMC9920104 | biostudies-literature
| S-EPMC7770937 | biostudies-literature
| S-EPMC6165088 | biostudies-literature
| S-EPMC10706831 | biostudies-literature
| S-EPMC7529785 | biostudies-literature
| S-EPMC6883796 | biostudies-literature
| S-EPMC6051398 | biostudies-literature
| S-EPMC6107639 | biostudies-literature