Unknown

Dataset Information

0

Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core.


ABSTRACT: The burial of hydrophobic side chains in a protein core generally is thought to be the major ingredient for stable, cooperative folding. Here, we show that, for the snow flea antifreeze protein (sfAFP), stability and cooperativity can occur without a hydrophobic core, and without ?-helices or ?-sheets. sfAFP has low sequence complexity with 46% glycine and an interior filled only with backbone H-bonds between six polyproline 2 (PP2) helices. However, the protein folds in a kinetically two-state manner and is moderately stable at room temperature. We believe that a major part of the stability arises from the unusual match between residue-level PP2 dihedral angle bias in the unfolded state and PP2 helical structure in the native state. Additional stabilizing factors that compensate for the dearth of hydrophobic burial include shorter and stronger H-bonds, and increased entropy in the folded state. These results extend our understanding of the origins of cooperativity and stability in protein folding, including the balance between solvent and polypeptide chain entropies.

SUBMITTER: Gates ZP 

PROVIDER: S-EPMC5338507 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core.

Gates Zachary P ZP   Baxa Michael C MC   Yu Wookyung W   Riback Joshua A JA   Li Hui H   Roux Benoît B   Kent Stephen B H SB   Sosnick Tobin R TR  

Proceedings of the National Academy of Sciences of the United States of America 20170213 9


The burial of hydrophobic side chains in a protein core generally is thought to be the major ingredient for stable, cooperative folding. Here, we show that, for the snow flea antifreeze protein (sfAFP), stability and cooperativity can occur without a hydrophobic core, and without α-helices or β-sheets. sfAFP has low sequence complexity with 46% glycine and an interior filled only with backbone H-bonds between six polyproline 2 (PP2) helices. However, the protein folds in a kinetically two-state  ...[more]

Similar Datasets

| S-EPMC8040868 | biostudies-literature
| S-EPMC2833379 | biostudies-literature
| S-EPMC2271162 | biostudies-literature
| S-EPMC5947689 | biostudies-literature
| S-EPMC2931739 | biostudies-literature
| 2159991 | ecrin-mdr-crc
| S-EPMC5604469 | biostudies-literature
| S-EPMC2651298 | biostudies-literature
| S-EPMC2242501 | biostudies-literature
| S-EPMC122772 | biostudies-literature