Unknown

Dataset Information

0

Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation.


ABSTRACT: Previously, the authors have identified that c-Met mediates reactivation of the PI3K/AKT pathway following BRAF inhibitor treatment in BRAF (V600E) mutant anaplastic thyroid cancer, thereby contributing to the acquired drug resistance. Therefore dual inhibition of BRAF and c-Met led to sustained treatment response, thereby maximizing the specific anti-tumor effect of targeted therapy. The present study goes one step further and aims to investigate the effect of acquired resistance of BRAF inhibitor on epithelial-to-mesenchymal transition (EMT) in BRAF mutant thyroid cancer cells and the effect of dual inhibition from combinatorial therapy. Two thyroid cancer cell lines, 8505C and BCPAP were selected and treated with BRAF inhibitor, PLX4032 and its effect on EMT were examined and compared. Further investigation was carried out in orthotopic xenograft mouse models. Unlike BCPAP cells, the BRAF inhibitor resistant 8505C cells showed increased expressions of EMT related markers such as vimentin, ?-catenin, and CD44. The combinatorial treatment of PLX4032 and PHA665752, a c-Met inhibitor reversed EMT. Similar results were confirmed in vivo. c-Met-mediated reactivation of the PI3K/AKT pathway contributes to the drug resistance to PLX4032 in BRAF (V600E) mutant anaplastic thyroid cancer cells and further promotes tumor cell migration and invasion by upregulated EMT mechanism. Dual inhibition of BRAF and c-Met leads to reversal of EMT, suggesting a maximal therapeutic response.

SUBMITTER: Byeon HK 

PROVIDER: S-EPMC5352181 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation.

Byeon Hyung Kwon HK   Na Hwi Jung HJ   Yang Yeon Ju YJ   Ko Sooah S   Yoon Sun Och SO   Ku Minhee M   Yang Jaemoon J   Kim Jae Wook JW   Ban Myung Jin MJ   Kim Ji-Hoon JH   Kim Da Hee DH   Kim Jung Min JM   Choi Eun Chang EC   Kim Chang-Hoon CH   Yoon Joo-Heon JH   Koh Yoon Woo YW  

Oncotarget 20170101 1


Previously, the authors have identified that c-Met mediates reactivation of the PI3K/AKT pathway following BRAF inhibitor treatment in BRAF (V600E) mutant anaplastic thyroid cancer, thereby contributing to the acquired drug resistance. Therefore dual inhibition of BRAF and c-Met led to sustained treatment response, thereby maximizing the specific anti-tumor effect of targeted therapy. The present study goes one step further and aims to investigate the effect of acquired resistance of BRAF inhibi  ...[more]

Similar Datasets

| S-EPMC4001781 | biostudies-literature
| S-EPMC7875916 | biostudies-literature
| S-EPMC7869871 | biostudies-literature
| S-EPMC4597606 | biostudies-literature
| S-EPMC8018073 | biostudies-literature
2013-07-26 | E-GEOD-48204 | biostudies-arrayexpress
| S-EPMC9217539 | biostudies-literature
2013-07-26 | GSE48204 | GEO
| S-EPMC3136543 | biostudies-literature
| S-EPMC7588414 | biostudies-literature