Loss of tapasin in human lung and colon cancer cells and escape from tumor-associated antigen-specific CTL recognition.
Ontology highlight
ABSTRACT: Cytotoxic T-lymphocytes (CTLs) lyse target cells after recognizing the complexes of peptides and MHC class I molecules (pMHC I) on cell surfaces. Tapasin is an essential component of the peptide-loading complex (PLC) and its absence influences the surface repertoire of MHC class I peptides. In the present study, we assessed tapasin expression in 85 primary tumor lesions of non-small cell lung cancer (NSCLC) patients, demonstrating that tapasin expression positively correlated with patient survival. CD8+ T-cell infiltration of tumor lesions was synergistically observed with tapasin expression and correlated positively with survival. To establish a direct link between loss of tapasin and CTL recognition in human cancer models, we targeted the tapasin gene by CRISPR/Cas9 system and generated tapasin-deficient variants of human lung as well as colon cancer cells. We induced the CTLs recognizing endogenous tumor-associated antigens (TAA), survivin or cep55, and they responded to each tapasin-proficient wild type. In contrast, both CTL lines ignored the tapasin-deficient variants despite their antigen expression. Moreover, the adoptive transfer of the cep55-specific CTL line failed to prevent tumor growth in mice bearing the tapasin-deficient variant. Loss of tapasin most likely limited antigen processing of TAAs and led to escape from TAA-specific CTL recognition. Tapasin expression is thus a key for CTL surveillance against human cancers.
SUBMITTER: Shionoya Y
PROVIDER: S-EPMC5353923 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA