Unknown

Dataset Information

0

Abnormal vocal behavior predicts executive and memory deficits in Alzheimer's disease.


ABSTRACT: Speakers respond automatically and rapidly to compensate for brief perturbations of pitch in their auditory feedback. The specific adjustments in vocal output require integration of brain regions involved in speech-motor-control in order to detect the sensory-feedback error and implement the motor correction. Cortical regions involved in the pitch reflex phenomenon are highly vulnerable targets of network disruption in Alzheimer's disease (AD). We examined the pitch reflex in AD patients (n = 19) compared to an age-matched control group (n = 16). We measured the degree of behavioral compensation (peak compensation) and the extent of the adaptive response (pitch-response persistence). Healthy-controls reached a peak compensation of 18.7 ± 0.8 cents, and demonstrated a sustained compensation at 8.9 ± 0.69 cents. AD patients, in contrast, demonstrated a significantly elevated peak compensation (22.4 ± 1.2 cents, p < 0.05), and a reduced sustained response (pitch-response persistence, 4.5 ± 0.88 cents, p < 0.001). The degree of increased peak compensation predicted executive dysfunction, while the degree of impaired pitch-response persistence predicted memory dysfunction, in AD patients. The current study demonstrates pitch reflex as a sensitive behavioral index of impaired prefrontal modulation of sensorimotor integration, and compromised plasticity mechanisms of memory, in AD.

SUBMITTER: Ranasinghe KG 

PROVIDER: S-EPMC5359035 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


Speakers respond automatically and rapidly to compensate for brief perturbations of pitch in their auditory feedback. The specific adjustments in vocal output require integration of brain regions involved in speech-motor-control in order to detect the sensory-feedback error and implement the motor correction. Cortical regions involved in the pitch reflex phenomenon are highly vulnerable targets of network disruption in Alzheimer's disease (AD). We examined the pitch reflex in AD patients (n = 19  ...[more]

Similar Datasets

| S-EPMC10055509 | biostudies-literature
| S-EPMC10953266 | biostudies-literature
| S-EPMC4843522 | biostudies-literature
| S-EPMC6588161 | biostudies-literature
| S-EPMC3756900 | biostudies-literature
| S-EPMC9313460 | biostudies-literature
| S-EPMC6095478 | biostudies-literature
| S-EPMC4927858 | biostudies-other
| S-EPMC6662706 | biostudies-literature
| S-EPMC6825886 | biostudies-literature