Human MFAP1 is a cryptic ortholog of the Saccharomyces cerevisiae Spp381 splicing factor.
Ontology highlight
ABSTRACT: Pre-mRNA splicing involves the stepwise assembly of a pre-catalytic spliceosome, followed by its catalytic activation, splicing catalysis and disassembly. Formation of the pre-catalytic spliceosomal B complex involves the incorporation of the U4/U6.U5 tri-snRNP and of a group of non-snRNP B-specific proteins. While in Saccharomyces cerevisiae the Prp38 and Snu23 proteins are recruited as components of the tri-snRNP, metazoan orthologs of Prp38 and Snu23 associate independently of the tri-snRNP as members of the B-specific proteins. The human spliceosome contains about 80 proteins that lack obvious orthologs in yeast, including most of the B-specific proteins apart from Prp38 and Snu23. Conversely, the tri-snRNP protein Spp381 is one of only five S. cerevisiae splicing factors without a known human ortholog.Using InParanoid, a state-of-the-art method for ortholog inference between pairs of species, and systematic BLAST searches we identified the human B-specific protein MFAP1 as a putative ortholog of the S. cerevisiae tri-snRNP protein Spp381. Bioinformatics revealed that MFAP1 and Spp381 share characteristic structural features, including intrinsic disorder, an elongated shape, solvent exposure of most residues and a trend to adopt ?-helical structures. In vitro binding studies showed that human MFAP1 and yeast Spp381 bind their respective Prp38 proteins via equivalent interfaces and that they cross-interact with the Prp38 proteins of the respective other species. Furthermore, MFAP1 and Spp381 both form higher-order complexes that additionally include Snu23, suggesting that they are parts of equivalent spliceosomal sub-complexes. Finally, similar to yeast Spp381, human MFAP1 partially rescued a growth defect of the temperature-sensitive mutant yeast strain prp38-1.Human B-specific protein MFAP1 structurally and functionally resembles the yeast tri-snRNP-specific protein Spp381 and thus qualifies as its so far missing ortholog. Our study indicates that the yeast Snu23-Prp38-Spp381 triple complex was evolutionarily reprogrammed from a tri-snRNP-specific module in yeast to the B-specific Snu23-Prp38-MFAP1 module in metazoa, affording higher flexibility in spliceosome assembly and thus, presumably, in splicing regulation.
SUBMITTER: Ulrich AK
PROVIDER: S-EPMC5364666 | biostudies-literature | 2017 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA