The Role of Sarcosine, Uracil, and Kynurenic Acid Metabolism in Urine for Diagnosis and Progression Monitoring of Prostate Cancer.
Ontology highlight
ABSTRACT: The aim of this pilot study is to evaluate sarcosine, uracil, and kynurenic acid in urine as potential biomarkers in prostate cancer detection and progression monitoring. Sarcosine, uracil, and kynurenic acid were measured in urine samples of 32 prostate cancer patients prior to radical prostatectomy, 101 patients with increased prostate-specific antigen prior to ultrasonographically-guided prostatic biopsy collected before and after prostatic massage, and 15 healthy volunteers (controls). The results were related to histopathologic data, Gleason score, and PSA (Prostate Specific Antigen). Metabolites were measured after analysis of urine samples with Ultra-High Performance Liquid Chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) instrumentation. Multivariate, nonparametric statistical tests including receiver operating characteristics analyses, one-way analysis of variance (Kruskal-Wallis test), parametric statistical analysis, and Pearson correlation, were performed to evaluate diagnostic performance. Decreased median sarcosine and kynurenic acid and increased uracil concentrations were observed for patients with prostate cancer compared to participants without malignancy. Results showed that there was no correlation between the concentration of the studied metabolites and the cancer grade (Gleason score <7 vs. ?7) and the age of the patients. Evaluation of biomarkers by ROC (Receiving Operating Characteristics) curve analysis showed that differentiation of prostate cancer patients from participants without malignancy was not enhanced by sarcosine or uracil levels in urine. In contrast to total PSA values, kynurenic acid was found a promising biomarker for the detection of prostate cancer particularly in cases where collection of urine samples was performed after prostatic massage. Sarcosine and uracil in urine samples of patients with prostate cancer were not found as significant biomarkers for the diagnosis of prostate cancer. None of the three metabolites can be used reliably for monitoring the progress of the disease.
SUBMITTER: Gkotsos G
PROVIDER: S-EPMC5372212 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA