Unknown

Dataset Information

0

Exclusive recognition of sarcosine in water and urine by a cavitand-functionalized silicon surface.


ABSTRACT: A supramolecular approach for the specific detection of sarcosine, recently linked to the occurrence of aggressive prostate cancer forms, has been developed. A hybrid active surface was prepared by the covalent anchoring on Si substrates of a tetraphosphonate cavitand as supramolecular receptor and it was proven able to recognize sarcosine from its nonmethylated precursor, glycine, in water and urine. The entire complexation process has been investigated in the solid state, in solution, and at the solid-liquid interface to determine and weight all the factors responsible of the observed specificity. The final outcome is a Si-based active surface capable of binding exclusively sarcosine. The complete selectivity of the cavitand-decorated surface under these stringent conditions represents a critical step forward in the use of these materials for the specific detection of sarcosine and related metabolites in biological fluids.

SUBMITTER: Biavardi E 

PROVIDER: S-EPMC3289311 | biostudies-literature | 2012 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exclusive recognition of sarcosine in water and urine by a cavitand-functionalized silicon surface.

Biavardi Elisa E   Tudisco Cristina C   Maffei Francesca F   Motta Alessandro A   Massera Chiara C   Condorelli Guglielmo G GG   Dalcanale Enrico E  

Proceedings of the National Academy of Sciences of the United States of America 20120130 7


A supramolecular approach for the specific detection of sarcosine, recently linked to the occurrence of aggressive prostate cancer forms, has been developed. A hybrid active surface was prepared by the covalent anchoring on Si substrates of a tetraphosphonate cavitand as supramolecular receptor and it was proven able to recognize sarcosine from its nonmethylated precursor, glycine, in water and urine. The entire complexation process has been investigated in the solid state, in solution, and at t  ...[more]

Similar Datasets

| S-EPMC6644403 | biostudies-literature
| S-EPMC8037811 | biostudies-literature
| S-EPMC3334860 | biostudies-literature
| S-EPMC6416615 | biostudies-literature
| S-EPMC3667208 | biostudies-literature
| S-EPMC2720318 | biostudies-literature
| S-EPMC2966534 | biostudies-literature
| S-EPMC3121807 | biostudies-other
| S-EPMC5868313 | biostudies-literature
| S-EPMC4568714 | biostudies-literature