Unknown

Dataset Information

0

Power analysis of single-cell RNA-sequencing experiments.


ABSTRACT: Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.

SUBMITTER: Svensson V 

PROVIDER: S-EPMC5376499 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis o  ...[more]

Similar Datasets

| S-EPMC4823857 | biostudies-literature
| S-EPMC6179251 | biostudies-literature
| S-EPMC7599215 | biostudies-literature
| S-EPMC8949403 | biostudies-literature
| S-EPMC6215955 | biostudies-literature
| S-EPMC7848352 | biostudies-literature
| S-EPMC6126471 | biostudies-literature
| S-EPMC7278076 | biostudies-literature
| S-EPMC7330047 | biostudies-literature
| S-EPMC8187165 | biostudies-literature