Cerebral 5-HT release correlates with [11C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain.
Ontology highlight
ABSTRACT: Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively generate temporal and spatial information about acute changes in brain neurotransmitter systems. We for the first time evaluate the novel 5-HT2A receptor agonist PET radioligand, [11C]Cimbi-36, for its sensitivity to detect changes in endogenous cerebral 5-HT levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain 5-HT levels, we calibrated the [11C]Cimbi-36 PET signal in the pig brain by simultaneous measurements of extracellular 5-HT levels with microdialysis and [11C]Cimbi-36 PET after various acute interventions (saline, citalopram, citalopram?+?pindolol, fenfluramine). In a subset of pigs, para-chlorophenylalanine pretreatment was given to deplete cerebral 5-HT. The interventions increased the cerebral extracellular 5-HT levels to 2-11 times baseline, with fenfluramine being the most potent pharmacological enhancer of 5-HT release, and induced a varying degree of decline in [11C]Cimbi-36 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular 5-HT level in the pig brain and the 5-HT2A receptor occupancy indicates that [11C]Cimbi-36 binding is sensitive to changes in endogenous 5-HT levels, although only detectable with PET when the 5-HT release is sufficiently high.
SUBMITTER: Jorgensen LM
PROVIDER: S-EPMC5381441 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA