Unknown

Dataset Information

0

Duplications and Positive Selection Drive the Evolution of Parasitism-Associated Gene Families in the Nematode Strongyloides papillosus.


ABSTRACT: Gene duplication is a major mechanism playing a role in the evolution of phenotypic complexity and in the generation of novel traits. By comparing parasitic and nonparasitic nematodes, a recent study found that the evolution of parasitism in Strongyloididae is associated with a large expansion in the Astacin and CAP gene families.To gain novel insights into the developmental processes in the sheep parasite Strongyloides papillosus, we sequenced transcriptomes of different developmental stages and sexes. Overall, we found that the majority of genes are developmentally regulated and have one-to-one orthologs in the diverged S. ratti genome. Together with the finding of similar expression profiles between S. papillosus and S. ratti, these results indicate a strong evolutionary constraint acting against change at sequence and expression levels. However, the comparison between parasitic and free-living females demonstrates a quite divergent pattern that is mostly due to the previously mentioned expansion in the Astacin and CAP gene families. More detailed phylogenetic analysis of both gene families shows that most members date back to single expansion events early in the Strongyloides lineage and have undergone subfunctionalization resulting in clusters that are highly expressed either in infective larvae or in parasitic females. Finally, we found increased evidence for positive selection in both gene families relative to the genome-wide expectation.In summary, our study reveals first insights into the developmental transcriptomes of S. papillosus and provides a detailed analysis of sequence and expression evolution in parasitism-associated gene families.

SUBMITTER: Baskaran P 

PROVIDER: S-EPMC5381570 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Duplications and Positive Selection Drive the Evolution of Parasitism-Associated Gene Families in the Nematode Strongyloides papillosus.

Baskaran Praveen P   Jaleta Tegegn G TG   Streit Adrian A   Rödelsperger Christian C  

Genome biology and evolution 20170301 3


Gene duplication is a major mechanism playing a role in the evolution of phenotypic complexity and in the generation of novel traits. By comparing parasitic and nonparasitic nematodes, a recent study found that the evolution of parasitism in Strongyloididae is associated with a large expansion in the Astacin and CAP gene families.To gain novel insights into the developmental processes in the sheep parasite Strongyloides papillosus, we sequenced transcriptomes of different developmental stages an  ...[more]

Similar Datasets

| S-EPMC65685 | biostudies-literature
| S-EPMC2965184 | biostudies-literature
| S-EPMC6367775 | biostudies-literature
| S-EPMC5886458 | biostudies-literature
2013-06-11 | E-ERAD-151 | biostudies-arrayexpress
| S-EPMC4889967 | biostudies-literature
| S-EPMC7302004 | biostudies-literature
| S-EPMC3434135 | biostudies-literature
| S-EPMC5120217 | biostudies-literature
| S-EPMC8518118 | biostudies-literature