Unknown

Dataset Information

0

In search of tail-anchored protein machinery in plants: reevaluating the role of arsenite transporters.


ABSTRACT: Although the mechanisms underlying selective targeting of tail-anchored (TA) membrane proteins are well established in mammalian and yeast cells, little is known about their role in mediating intracellular membrane trafficking in plant cells. However, a recent study suggested that, in green algae, arsenite transporters located in the cytosol (ArsA1 and ArsA2) control the insertion of TA proteins into the membrane-bound organelles. In the present work, we overproduced and purified these hydrophilic proteins to near homogeneity. The analysis of their catalytic properties clearly demonstrates that C. reinhardtii ArsA proteins exhibit oxyanion-independent ATPase activity, as neither arsenite nor antimonite showed strong effects. Co-expression of ArsA proteins with TA-transmembrane regions showed not only that the former interact with the latter, but that ArsA1 does not share the same ligand specificity as ArsA2. Together with a structural model and molecular dynamics simulations, we propose that C. reinhadtii ArsA proteins are not arsenite transporters, but a TA-protein targeting factor. Further, we propose that ArsA targeting specificity is achieved at the ligand level, with ArsA1 mainly carrying TA-proteins to the chloroplast, while ArsA2 to the endoplasmic reticulum.

SUBMITTER: Maestre-Reyna M 

PROVIDER: S-EPMC5382584 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

In search of tail-anchored protein machinery in plants: reevaluating the role of arsenite transporters.

Maestre-Reyna Manuel M   Wu Shu-Mei SM   Chang Yu-Ching YC   Chen Chi-Chih CC   Maestre-Reyna Alvaro A   Wang Andrew H-J AH   Chang Hsin-Yang HY  

Scientific reports 20170406


Although the mechanisms underlying selective targeting of tail-anchored (TA) membrane proteins are well established in mammalian and yeast cells, little is known about their role in mediating intracellular membrane trafficking in plant cells. However, a recent study suggested that, in green algae, arsenite transporters located in the cytosol (ArsA1 and ArsA2) control the insertion of TA proteins into the membrane-bound organelles. In the present work, we overproduced and purified these hydrophil  ...[more]

Similar Datasets

| S-EPMC5986991 | biostudies-literature
| S-EPMC9866221 | biostudies-literature
| S-EPMC6343671 | biostudies-literature
| S-EPMC3760496 | biostudies-literature
| S-EPMC2562055 | biostudies-literature
| S-EPMC5214336 | biostudies-literature
| S-EPMC3155638 | biostudies-literature
| S-EPMC5657598 | biostudies-literature
| S-EPMC6040593 | biostudies-literature
| S-EPMC6528170 | biostudies-literature