<h4>Purpose</h4>The purpose of this work was to explore the impact of slice profile effects on apparent diffusion coefficient (ADC) mapping of hyperpolarized (HP) substrates.<h4>Methods</h4>Slice profile effects were simulated using a Gaussian radiofrequency (RF) pulse with a variety of flip angle schedules and b-value ordering schemes. A long T<sub>1</sub> water phantom was used to validate the simulation results, and ADC mapping of HP [<sup>13</sup> C,<sup>15</sup> N<sub>2</sub> ]urea was perf ...[more]
Project description:To evaluate the effects of lung volume differences on apparent diffusion coefficient (ADC) measurements on a regional basis, with breath holds at volumes adjusted for differences in lung size across individuals according to the subject's vital capacity (VC).This study was approved by the local institutional review board and was compliant with HIPAA. Informed consent was obtained from all subjects. Imaging was performed under a physician's Investigational New Drug application from the Food and Drug Administration. ADC changes as a function of inflation levels were evaluated in 24 healthy never-smokers across three lung volumes (20%, 60%, and 100% VC) on the basis of the spirometric data collected from each subject. Response variables based on lung volume and anatomic position were assessed with multifactorial analysis of variance followed by posthoc pair-wise testing. Imaging was performed with a 1.5-T magnetic resonance (MR) unit with use of a two-dimensional gradient-echo fast low-angle shot sequence.Significant differences in ADCs between lung volumes were observed for all inflation levels (20%, 60%, and 100% VC; P < .001), along with significant dependent-nondependent vertical gradients at 20% VC (P < .0001) and 60% VC (P < .0001, left lung only). In addition, significant differences between mean values in the left and right lungs with respect to those in the whole lung were observed at the lower lung inflation levels (20% and 60% VC, P < .01), reaching more uniform expansion at 100% VC.The results confirm known anatomic differences in patterns of regional inflation and ventilation with corresponding lung volume changes, emphasizing the need for tight control over lung volume when performing hyperpolarized helium 3 ((3)He) lung studies if (3)He MR imaging is to be used to follow up small longitudinal changes in lung abnormalities.
Project description:PURPOSE:To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. MATERIALS AND METHODS:Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. RESULTS:Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. CONCLUSION:Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.
Project description:Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials.Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models.The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions.The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies.
Project description:ObjectivesTo systematically review the value of apparent diffusion coefficient (ADC) measurement in the differentiation between benign and malignant lesions.MethodsA systematic search of the Medline/Pubmed and Embase databases revealed 109 relevant studies. Quality of these articles was assessed using the Quality Assessment of the Studies of Diagnostic Accuracy Included in Systematic Reviews (QUADAS) criteria. Reported ADC values of benign and malignant lesions were compared per organ.ResultsThe mean quality score of the reviewed articles was 50%. Comparison of ADC values showed marked variation among studies and between benign and malignant lesions in various organs. In several organs, such as breast, liver, and uterus, ADC values discriminated well between benign and malignant lesions. In other organs, such as the salivary glands, thyroid, and pancreas, ADCs were not significantly different between benign and malignant lesions.ConclusionThe potential utility of ADC measurement for the characterisation of tumours differs per organ. Future well-designed studies are required before ADC measurements can be recommended for the differentiation of benign and malignant lesions. These future studies should use standardised acquisition protocols and provide complete reporting of study methods, to facilitate comparison of results and clinical implementation of ADC measurement for tumour characterisation.
Project description:Using semi-automated software simplifies quantitative analysis of the visible burden of disease on whole-body MRI diffusion-weighted images. To establish the intra- and inter-observer reproducibility of apparent diffusion coefficient (ADC) measures, we retrospectively analyzed data from 20 patients with bone metastases from breast (BCa; n = 10; aged 62.3 ± 14.8) or prostate cancer (PCa; n = 10; aged 67.4 ± 9.0) who had undergone examinations at two timepoints, before and after hormone-therapy. Four independent observers processed all images twice, first segmenting the entire skeleton on diffusion-weighted images, and then isolating bone metastases via ADC histogram thresholding (ADC: 650-1400 µm2/s). Dice Similarity, Bland-Altman method, and Intraclass Correlation Coefficient were used to assess reproducibility. Inter-observer Dice similarity was moderate (0.71) for women with BCa and poor (0.40) for men with PCa. Nonetheless, the limits of agreement of the mean ADC were just ±6% for women with BCa and ±10% for men with PCa (mean ADCs: 941 and 999 µm2/s, respectively). Inter-observer Intraclass Correlation Coefficients of the ADC histogram parameters were consistently greater in women with BCa than in men with PCa. While scope remains for improving consistency of the volume segmented, the observer-dependent variability measured in this study was appropriate to distinguish the clinically meaningful changes of ADC observed in patients responding to therapy, as changes of at least 25% are of interest.
Project description:Background and Purpose- In this era of endovascular therapy (EVT) with early, complete recanalization and reperfusion, we have observed an even more rapid apparent diffusion coefficient (ADC) normalization within the acute ischemic lesion compared with the natural history or IV-tPA-treated patient. In this study, we aimed to evaluate the effect of revascularization on ADC evolution within the core lesion in the first 24 hours in acute ischemic stroke patients. Methods- This retrospective study included anterior circulation acute ischemic stroke patients treated with EVT with or without intravenous tPA (IVT) from 2015 to 2017 compared with a consecutive cohort of IVT-only patients treated before 2015. Diffusion-weighted imaging and ADC maps were used to quantify baseline core lesions. Median ADC value change and core reversal were determined at 24 hours. Diffusion-weighted imaging lesion growth was measured at 24 hours and 5 days. Good clinical outcome was defined as modified Rankin Scale score of 0 to 2 at 90 days. Results- Twenty-five patients (50%) received IVT while the other 25 patients received EVT (50%) with or without IVT. Between these patient groups, there were no differences in age, sex, baseline National Institutes of Health Stroke Scale, interhospital transfer, or IVT rates. Thirty-two patients (64%) revascularized with 69% receiving EVT. There was a significant increase in median ADC value of the core lesion at 24 hours in patients who revascularized compared with further ADC reduction in nonrevascularization patients. Revascularization patients had a significantly higher rate of good clinical outcome at 90 days, 63% versus 9% (P=0.003). Core reversal at 24 hours was significantly higher in revascularization patients, 69% versus 22% (P=0.002). Conclusions- ADC evolution in acute ischemic stroke patients with early, complete revascularization, now more commonly seen with EVT, is strikingly different from our historical understanding. The early ADC normalization we have observed in this setting may include a component of secondary injury and serve as a potential imaging biomarker for the development of future adjunctive therapies. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT00009243.
Project description:Apparent diffusion coefficients (ADC) can provide phenotypic information of brain lesions, which can aid the diagnosis of brain alterations in neonates with congenital heart diseases (CHDs). However, the corresponding clinical significance of quantitative descriptors of brain tissue remains to be elucidated. By using ADC metrics and texture features, this study aimed to investigate the diagnostic value of single-slice and multi-slice measurements for assessing brain alterations in neonates with CHDs. ADC images were acquired from 60 neonates with echocardiographically confirmed non-cyanotic CHDs and 22 healthy controls (HCs) treated at Children's Hospital of Nanjing Medical University from 2012 to 2016. ADC metrics and texture features for both single and multiple slices of the whole brain were extracted and analyzed to the gestational age. The diagnostic performance of ADC metrics for CHDs was evaluated by using analysis of covariance and receiver operating characteristic. For both the CHD and HC groups, ADC metrics were inversely correlated with the gestational age in single and multi-slice measurements (P < 0.05). Histogram metrics were significant for identifying CHDs (P < 0.05), while textural features were insignificant. Multi-slice ADC (P < 0.01) exhibited greater diagnostic performance for CHDs than single-slice ADC (P < 0.05). These findings indicate that radiomic analysis based on ADC metrics can objectively provide more quantitative information regarding brain development in neonates with CHDs. ADC metrics for the whole brain may be more clinically significant in identifying atypical brain development in these patients. Of note, these results suggest that multi-slice ADC can achieve better diagnostic performance for CHD than single-slice.
Project description:This study evaluated the inter-reader agreement of tumor apparent diffusion coefficient (ADC) measurements performed on breast diffusion-weighted imaging (DWI) for assessing treatment response in a multi-center clinical trial of neoadjuvant chemotherapy (NAC) for breast cancer. DWIs from 103 breast cancer patients (mean age: 46 ± 11 years) acquired at baseline and after 3 weeks of treatment were evaluated independently by two readers. Three types of tumor regions of interests (ROIs) were delineated: multiple-slice restricted, single-slice restricted and single-slice tumor ROIs. Compared to tumor ROIs, restricted ROIs were limited to low ADC areas of enhancing tumor only. We found excellent agreement (intraclass correlation coefficient [ICC] ranged from 0.94 to 0.98) for mean ADC. Higher ICCs were observed in multiple-slice restricted ROIs (range: 0.97 to 0.98) than in other two ROI types (both in the range of 0.94 to 0.98). Among the three ROI types, the highest area under the receiver operating characteristic curves (AUCs) were observed for mean ADC of multiple-slice restricted ROIs (0.65, 95% confidence interval [CI]: 0.52-0.79 and 0.67, 95% CI: 0.53-0.81 for Reader 1 and Reader 2, respectively). In conclusion, mean ADC values of multiple-slice restricted ROI showed excellent agreement and similar predictive performance for pathologic complete response between the two readers.
Project description:BackgroundAccurate assessment of programmed death-ligand 1 (PD-L1) expression status in nasopharyngeal carcinoma (NPC) before immunotherapy is crucial. We aimed to explore the reproducibility and usefulness of the quantitative apparent diffusion coefficient (ADC) measurements for predicting PD-L1expression status in NPC.MethodsWe retrospectively recruited 134 NPC patients who underwent MRI scans and PD-L1 detection. A PD-L1 combined positive score (CPS) ≥ 20 was identified as high expression status. Patients were divide into two cohorts based on the MRI scanning devices, including a 1.5-T MRI cohort (n = 85, 44 PD-L1 high expression) and a 3.0-T MRI cohort (n = 49, 24 PD-L1 high expression). The mean ADC (ADCmean), minimum ADC (ADCmin) and maximal ADC (ADCmax) values were independently measured by two observers. The ADC measurement reproducibility was assessed by interclass correlation coefficients (ICC). The correlations between ADC parameters and CPS were analyzed by spearman's correlation coefficient (r), and the performance for PD-L1expression status prediction was assessed by the area under receiver operating characteristic curve (AUC).ResultsThe measurement reproducibility of ADCmean, ADCmin and ADCmax was good in the 1.5-T MRI cohort (ICC: 0.843-0.930) and 3.0-T MRI cohort (ICC: 0.929-0.960). The ADCmean, ADCmin, and ADCmax tended to inversely correlate with the CPS (r:-0.37 - -0.52 in the 1.5-T MRI cohort, and - 0.52 - -0.60 in the 3.0-T MRI cohort; P all < 0.01). The ADCmean, ADCmin and ADCmax yielded the AUC of 0.756 (95% CI: 0.651, 0.861), 0.689 (95% CI: 0.576, 0.802), and 0.733 (95%CI: 0.626, 0.839) in the 1.5-T MRI cohort and 0.820 (95%CI: 0.703, 0.937), 0.755 (95% CI: 0.616, 0.894), and 0.760 (95%CI: 0.627, 0.893) in the 3.0-T MRI cohort for predicting PD-L1 high expression status, respectively.ConclusionADC measurements may act as a reproducible and feasible method to predict PD-L1 expression status in NPC.
Project description:Background and purposeIntramedullary high signal intensity on T2-weighted imaging was frequently observed in patients with CSM, although this finding does not well correlate with severity or prognosis of CSM. Instead of this nonquantitative information, another measure for CSM is desired. The work was focused primarily on assessing the relationships between ADC values and clinical and radiologic severity for the diagnosis of CSM.Materials and methodsThe relationship between ADC values measured in the spinal cord at 322 intervertebral levels of 66 patients and clinical factors were analyzed.ResultsADC values in the spinal cord significantly increased with the degree of spinal cord compression and decreased with time after decompression surgery. Patients with higher ADC values had lower preoperative JOA scores and tended to show poorer clinical recovery.ConclusionsADC values appear to indicate the severity of spinal cord compression and clinical recovery after decompression surgery, so spondylotic myelopathy may partly be predicted preoperatively by using ADC values.