Ontology highlight
ABSTRACT: Objective
Drug repositioning is a promising methodology for reducing the cost and duration of the drug discovery pipeline. We sought to develop a computational repositioning method leveraging annotations in the literature, such as Medical Subject Heading (MeSH) terms.Methods
We developed software to determine significantly co-occurring drug-MeSH term pairs and a method to estimate pair-wise literature-derived distances between drugs.Results
We found that literature-based drug-drug similarities predicted the number of shared indications across drug-drug pairs. Clustering drugs based on their similarity revealed both known and novel drug indications. We demonstrate the utility of our approach by generating repositioning hypotheses for the commonly used diabetes drug metformin.Conclusion
Our study demonstrates that literature-derived similarity is useful for identifying potential repositioning opportunities. We provided open-source code and deployed a free-to-use, interactive application to explore our database of similarity-based drug clusters (available at http://apps.chiragjpgroup.org/MeSHDD/ ).
SUBMITTER: Brown AS
PROVIDER: S-EPMC5391732 | biostudies-literature | 2017 May
REPOSITORIES: biostudies-literature
Brown Adam S AS Patel Chirag J CJ
Journal of the American Medical Informatics Association : JAMIA 20170501 3
<h4>Objective</h4>Drug repositioning is a promising methodology for reducing the cost and duration of the drug discovery pipeline. We sought to develop a computational repositioning method leveraging annotations in the literature, such as Medical Subject Heading (MeSH) terms.<h4>Methods</h4>We developed software to determine significantly co-occurring drug-MeSH term pairs and a method to estimate pair-wise literature-derived distances between drugs.<h4>Results</h4>We found that literature-based ...[more]