Unknown

Dataset Information

0

Antibiotics trigger initiation of SCCmec transfer by inducing SOS responses.


ABSTRACT: The rise of antimicrobial resistance limits therapeutic options for infections by methicillin-resistant staphylococci. The staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element as the only carrier of the methicillin-resistance determinants, the mecA or mecC gene. The use of antibiotics increases the spread of antibiotic resistance, but the mechanism by which antibiotics promote horizontal dissemination of SCCmec is largely unknown. In this study, we demonstrate that many antibiotics, including ?-lactams, can induce the expression of ccrC1 and SCCmec excision from the bacterial chromosome. In particular, three widely used antibiotics targeting DNA replication and repair (sulfamethoxazole, ciprofloxacin and trimethoprim) induced higher levels of ccrC1 expression and higher rates of SCCmec excision even at low concentrations (1/8 × minimum inhibitory concentration). LexA was identified as a repressor of ccrC1 and ccrAB by binding to the promoter regions of ccrC1 and ccrAB. The activation of RecA after antibiotic induction alleviated the repression by LexA and increased the expression of ccrC1 or ccrAB, consequently increasing the excision frequency of the SCCmec for SCCmec transfer. These findings lead us to propose a mechanism by which antimicrobial agents can promote horizontal gene transfer of the mecA gene and facilitate the spread of methicillin resistance.

SUBMITTER: Liu P 

PROVIDER: S-EPMC5397144 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Antibiotics trigger initiation of SCCmec transfer by inducing SOS responses.

Liu Pilong P   Wu Zhaowei Z   Xue Huping H   Zhao Xin X  

Nucleic acids research 20170401 7


The rise of antimicrobial resistance limits therapeutic options for infections by methicillin-resistant staphylococci. The staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element as the only carrier of the methicillin-resistance determinants, the mecA or mecC gene. The use of antibiotics increases the spread of antibiotic resistance, but the mechanism by which antibiotics promote horizontal dissemination of SCCmec is largely unknown. In this study, we demonstrate that many an  ...[more]

Similar Datasets

| S-EPMC10967838 | biostudies-literature
| S-EPMC4837107 | biostudies-literature
| S-EPMC6855411 | biostudies-literature
| S-EPMC8160332 | biostudies-literature
| S-EPMC176589 | biostudies-other
| S-EPMC2533449 | biostudies-literature
| S-EPMC3832272 | biostudies-literature
| S-EPMC7381030 | biostudies-literature
| S-EPMC7267965 | biostudies-literature
| S-EPMC8717618 | biostudies-literature