Unknown

Dataset Information

0

Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application.


ABSTRACT: Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces.

SUBMITTER: Zhang RC 

PROVIDER: S-EPMC5402388 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application.

Zhang Ri-Chao RC   Sun Dan D   Zhang Ruirui R   Lin Wen-Feng WF   Macias-Montero Manuel M   Patel Jenish J   Askari Sadegh S   McDonald Calum C   Mariotti Davide D   Maguire Paul P  

Scientific reports 20170424


Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid in  ...[more]

Similar Datasets

| S-EPMC11202582 | biostudies-literature
| S-EPMC4488066 | biostudies-literature
| S-EPMC5737395 | biostudies-literature
| S-EPMC9076066 | biostudies-literature
| S-EPMC5510961 | biostudies-literature
| S-EPMC6650484 | biostudies-literature
| S-EPMC7599496 | biostudies-literature
| S-EPMC4102399 | biostudies-literature
| S-EPMC9389553 | biostudies-literature
| S-EPMC4193796 | biostudies-literature