Project description:Thy-1 (CD90) has been shown to be a potential marker for several different types of cancer. However, reports on CD90 expression in pancreatic intraepithelial neoplasia (PanIN) lesions are still limited where PanINs are the most important precursor lesion of pancreatic ductal adenocarcinoma (PDAC). Herein, we investigate candidate markers for PanIN lesions by examining the distribution and trend of CD90 and CD24 expression as well as their co-expression in various stages of PanINs. Thirty cases of PanINs, which were confirmed histopathologically and clinically, were used to evaluate protein expression of CD90 and CD24 by immunofluoresence double staining. CD90 was found to be mainly expressed in stroma around lesion ducts while not observed in acini and islets in PanINs. CD90 also showed increased expression in PanIN III compared to PanIN III. CD24 was mainly present in the cytoplasm and membrane of pancreatic ductal epithelia, especially in the apical epithelium of the duct. CD24 had higher expression in PanIN III compared with PanIN IIIIII or PanIN III. CD90 was expressed around CD24 sites, but there was little overlap between cells that expressed each of these proteins. A correlation analysis showed that these two proteins have a moderate relationship with PanIN stages respectively. These results suggest that co-expression of CD90 and CD24 may have an important role in the development and progression of PanINs, which is also conducive to early detection and treatment of PDAC.
Project description:MicroRNA (miRNA) alterations are likely to contribute to the development of pancreatic cancer and may serve as markers for the early detection of pancreatic neoplasia.To identify the miRNA alterations that arise during the development of pancreatic cancer, we determined the levels of 735 miRNAs in 34 pancreatic intraepithelial neoplasias (PanIN) and 15 normal pancreatic duct samples isolated by laser capture microdissection using TaqMan miRNA microarrays. Differential expression of selected miRNAs was confirmed by FISH analysis and by quantitative real-time reverse transcription PCR (qRT-PCR) analysis of selected candidate miRNAs in an independent set of PanIN and normal duct samples.We identified 107 aberrantly expressed miRNAs in different PanIN grades compared with normal pancreatic duct samples and 35 aberrantly expressed miRNAs in PanIN-3 lesions compared with normal pancreatic duct samples. These differentially expressed miRNAs included those that have been previously identified as differentially expressed in pancreatic ductal adenocarcinomas (PDAC; including miR-21, miR-200a/b/c, miR-216a/b, miR-217, miR-146a, miR-155, miR-182, miR-196b, miR-203, miR-222, miR-338-3p, miR-486-3p, etc.) as well as miRNAs not previously described as differentially expressed in these lesions (miR-125b, miR-296-5p, miR-183*, miR-603, miR-625/*, miR-708, etc.). miR-196b was the most selectively differentially expressed miRNA in PanIN-3 lesions.Many miRNAs undergo aberrant expression in PanIN lesions and are likely to be important in the development of PDAC. The miRNAs, such as miR-196b, whose expression is limited to PanIN-3 lesions or pancreatic cancers could be useful as diagnostic markers.
Project description:While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.
Project description:Neoplasias of the hepatopancreatobiliary tract are growing in numbers, have the poorest prognosis of all major cancer entities, and thus represent a rising clinical problem. Their molecular diagnostic has dramatically improved, contributing to tumor subtyping, definition of malignancy, and uncovering cases with hereditary predisposition. Most of all, predictive molecular testing allows to identify cases amenable to treatment with the rising number of approved targeted drugs, immune-oncological treatment, and clinical trials. In this review, the current state of molecular testing and its contribution to clinical decision-making are outlined.
Project description:Multiparous Stat1-/- mice spontaneously develop mammary tumors with increased incidence: at an average age of 12 months, 55% of the animals suffer from mammary cancer, although the histopathology is heterogeneous. We consistently observed mosaic expression or down-regulation of STAT1 protein in wild-type mammary cancer evolving in the control group. Transplantation experiments show that tumorigenesis in Stat1-/- mice is partially influenced by impaired CTL mediated tumor surveillance. Additionally, STAT1 exerts an intrinsic tumor suppressing role by controlling and blocking proliferation of the mammary epithelium. Loss of STAT1 in epithelial cells enhances cell growth in both transformed and primary cells. The increased proliferative capacity leads to the loss of structured acini formation in 3D-cultures. Analogous effects were observed when Irf1-/- epithelial cells were used. Accordingly, the rate of mammary intraepithelial neoplasias (MINs) is increased in Stat1-/- animals: MINs represent the first step towards mammary tumors. The experiments characterize STAT1/IRF1 as a key growth inhibitory and tumor suppressive signaling pathway that prevents mammary cancer formation by maintaining growth control. Furthermore, they define the loss of STAT1 as a predisposing event via enhanced MIN formation.
Project description:Clonal populations originated from benign-looking 'founder cells' may spread widely within pancreas instead of being localized in situ before frank pancreatic ductal adenocarcinoma (PDA) can be detected. Metachronous PDA is not common event, and we here sought to define potent origin of multiple PDAs developed in a woman using advanced genetics technologies. Curative resection of pancreatic head tumour was performed; however, 'recurrent' lesions in the remnant pancreas were found 3.5 years later and total pancreatectomy was subsequently performed. The metachronous lesions were morphologically similar to the primary PDA. Using a next-generation sequencing and digital PCR, all three PDAs were shown to possess rare somatic mutations in KRAS (p.T58I & p.Q61H). Curiously, identical KRAS mutations were found in low-grade 'intraepithelial' lesions, which localized in normal area of the pancreas and one of them possessed p53 mutation, which was also found in the PDAs. The footprint of the tumour evolution marked by mutational profiling supports a human correlate to the mouse models of 'dissemination' occurring at the earliest stages of pancreatic neoplasia.
Project description:Increasing grade of pancreatic intraepithelial neoplasia (PanIN) has been associated with progression to pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms that control progression from PanINs to PDAC are not well understood. We investigated the genetic alterations involved in this process.Genomic DNA samples from laser-capture microdissected PDACs and adjacent PanIN2 and PanIN3 lesions from 10 patients with pancreatic cancer were analyzed by exome sequencing.Similar numbers of somatic mutations were identified in PanINs and tumors, but the mutational load varied greatly among cases. Ten of the 15 isolated PanINs shared more than 50% of somatic mutations with associated tumors. Mutations common to tumors and clonally related PanIN2 and PanIN3 lesions were identified as genes that could promote carcinogenesis. KRAS and TP53 frequently were altered in PanINs and tumors, but few other recurrently modified genes were detected. Mutations in DNA damage response genes were prevalent in all samples. Genes that encode proteins involved in gap junctions, the actin cytoskeleton, the mitogen-activated protein kinase signaling pathway, axon guidance, and cell-cycle regulation were among the earliest targets of mutagenesis in PanINs that progressed to PDAC.Early stage PanIN2 lesions appear to contain many of the somatic gene alterations required for PDAC development.
Project description:CD44(+) /CD24(+) /EpCAM(+) cells have been reported to be cancer stem cells in pancreatic cancer; however, the histological and clinical importance of these cells has not yet been investigated. Here we clarified the characteristics of CD44(+) /CD24(+) /EpCAM(+) cells in clinical specimens of pancreatic cancer using immunohistochemical assay. We used surgical specimens of pancreatic ductal adenocarcinoma from 101 patients. In view of tumor heterogeneity, we randomly selected 10 high-power fields per case, and triple-positive CD44(+) /CD24(+) /EpCAM(+) expression was identified using our scoring system. The distribution, histological characteristics, and prognostic importance of CD44(+) /CD24(+) /EpCAM(+) cells were then analyzed. As a result, the distribution of CD44(+) /CD24(+) /EpCAM(+) cells varied widely among the 101 cases examined, and CD44(+) /CD24(+) /EpCAM(+) expression was correlated with poor glandular differentiation and high proliferation. Survival analysis showed that CD44(+) /CD24(+) /EpCAM(+) expression was not correlated with patient outcome; however, CD44(+) /CD24(+) expression appeared to be correlated with poor prognosis. In conclusion, CD44(+) /CD24(+) /EpCAM(+) expression overlapped with poorly differentiated cells and possessed high proliferative potential in clinical pancreatic cancer. In particular, the presence of double-positive CD44(+) /CD24(+) expression seemed to have clinical relevance, associating with poor prognosis.
Project description:Colposcopy is a test performed to detect precancerous lesions of cervical cancer. Since cervical cancer progresses slowly, finding and treating precancerous lesions helps prevent cervical cancer. In particular, it is clinically important to detect high-grade squamous intraepithelial lesions (HSIL) that require surgical treatment among precancerous lesions of cervix. There have been several studies using convolutional neural network (CNN) for classifying colposcopic images. However, no studies have been reported on using the segmentation technique to detect HSIL. In present study, we aimed to examine whether the accuracy of a CNN model in detecting HSIL from colposcopic images can be improved when segmentation information for acetowhite epithelium is added. Without segmentation information, ResNet-18, 50, and 101 achieved classification accuracies of 70.2%, 66.2%, and 69.3%, respectively. The experts classified the same test set with accuracies of 74.6% and 73.0%. After adding segmentation information of acetowhite epithelium to the original images, the classification accuracies of ResNet-18, 50, and 101 improved to 74.8%, 76.3%, and 74.8%, respectively. We demonstrated that the HSIL detection accuracy improved by adding segmentation information to the CNN model, and the improvement in accuracy was consistent across different ResNets.
Project description:Pancreatic cancer is a common type of gastrointestinal tumour throughout the world and is characterised by high malignancy rates and poor prognosis. Studies indicated that early and effective diagnosis is key to prolonging patients' overall survival, particularly in the case of fluid biopsy. Given this, the present study was designed to evaluate the expression profile arrays of patients with pancreatic cancer from the Gene Expression Omnibus database in an effort to identify differentially expressed microRNAs (miRNAs/miRs) that may be suitable for application in liquid biopsy-based diagnostics. Suitable miRNA candidates were identified using a weighted correlation network analysis (WGCNA) and key differentially expressed miRNAs were verified using reverse transcription-quantitative PCR. WGCNA identified 11 differentially expressed miRNAs (miR-155-5p, miR-4668-5p, miR-3613-3p, miR-3201, miR-548ac, miR-486-5p, miR-548a-3p, miR-8084, miR-455-3p, miR-6068 and miR-1246). Of these, miR-4668-5p was indicated to have the highest number of associated modules, making it most likely to be of diagnostic value. Thus, the present analysis identified 11 miRNAs associated with pancreatic cancer and further identified miR-4668-5p as a potential biomarker for pancreatic cancer diagnosis.