Unknown

Dataset Information

0

1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.


ABSTRACT: HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value?

SUBMITTER: Gorski M 

PROVIDER: S-EPMC5408227 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

Gorski Mathias M   van der Most Peter J PJ   Teumer Alexander A   Chu Audrey Y AY   Li Man M   Mijatovic Vladan V   Nolte Ilja M IM   Cocca Massimiliano M   Taliun Daniel D   Gomez Felicia F   Li Yong Y   Tayo Bamidele B   Tin Adrienne A   Feitosa Mary F MF   Aspelund Thor T   Attia John J   Biffar Reiner R   Bochud Murielle M   Boerwinkle Eric E   Borecki Ingrid I   Bottinger Erwin P EP   Chen Ming-Huei MH   Chouraki Vincent V   Ciullo Marina M   Coresh Josef J   Cornelis Marilyn C MC   Curhan Gary C GC   d'Adamo Adamo Pio AP   Dehghan Abbas A   Dengler Laura L   Ding Jingzhong J   Eiriksdottir Gudny G   Endlich Karlhans K   Enroth Stefan S   Esko Tõnu T   Franco Oscar H OH   Gasparini Paolo P   Gieger Christian C   Girotto Giorgia G   Gottesman Omri O   Gudnason Vilmundur V   Gyllensten Ulf U   Hancock Stephen J SJ   Harris Tamara B TB   Helmer Catherine C   Höllerer Simon S   Hofer Edith E   Hofman Albert A   Holliday Elizabeth G EG   Homuth Georg G   Hu Frank B FB   Huth Cornelia C   Hutri-Kähönen Nina N   Hwang Shih-Jen SJ   Imboden Medea M   Johansson Åsa Å   Kähönen Mika M   König Wolfgang W   Kramer Holly H   Krämer Bernhard K BK   Kumar Ashish A   Kutalik Zoltan Z   Lambert Jean-Charles JC   Launer Lenore J LJ   Lehtimäki Terho T   de Borst Martin M   Navis Gerjan G   Swertz Morris M   Liu Yongmei Y   Lohman Kurt K   Loos Ruth J F RJF   Lu Yingchang Y   Lyytikäinen Leo-Pekka LP   McEvoy Mark A MA   Meisinger Christa C   Meitinger Thomas T   Metspalu Andres A   Metzger Marie M   Mihailov Evelin E   Mitchell Paul P   Nauck Matthias M   Oldehinkel Albertine J AJ   Olden Matthias M   Wjh Penninx Brenda B   Pistis Giorgio G   Pramstaller Peter P PP   Probst-Hensch Nicole N   Raitakari Olli T OT   Rettig Rainer R   Ridker Paul M PM   Rivadeneira Fernando F   Robino Antonietta A   Rosas Sylvia E SE   Ruderfer Douglas D   Ruggiero Daniela D   Saba Yasaman Y   Sala Cinzia C   Schmidt Helena H   Schmidt Reinhold R   Scott Rodney J RJ   Sedaghat Sanaz S   Smith Albert V AV   Sorice Rossella R   Stengel Benedicte B   Stracke Sylvia S   Strauch Konstantin K   Toniolo Daniela D   Uitterlinden Andre G AG   Ulivi Sheila S   Viikari Jorma S JS   Völker Uwe U   Vollenweider Peter P   Völzke Henry H   Vuckovic Dragana D   Waldenberger Melanie M   Jin Wang Jie J   Yang Qiong Q   Chasman Daniel I DI   Tromp Gerard G   Snieder Harold H   Heid Iris M IM   Fox Caroline S CS   Köttgen Anna A   Pattaro Cristian C   Böger Carsten A CA   Fuchsberger Christian C  

Scientific reports 20170428


HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular f  ...[more]

Similar Datasets

| S-EPMC4737645 | biostudies-literature
| S-EPMC3376268 | biostudies-literature
| S-EPMC6081985 | biostudies-literature
| S-EPMC3247076 | biostudies-literature
2015-07-01 | GSE70188 | GEO
| S-EPMC3527213 | biostudies-literature
| S-EPMC9771978 | biostudies-literature
| S-EPMC5888745 | biostudies-literature
| S-EPMC8397525 | biostudies-literature
| S-EPMC6644297 | biostudies-literature