Project description:ObjectivesThis paper examined whether nebivolol protects the heart via nitric oxide (NO) synthase and NO-dependent signaling in an in vivo model of acute myocardial infarction.BackgroundBeta(3)-adrenergic receptor (AR) activation promotes endothelial nitric oxide synthase (eNOS) activity and NO bioavailability. We hypothesized that specific beta(3)-AR agonists would attenuate myocardial ischemia-reperfusion (MI/R) injury via eNOS activation and increased NO bioavailability.MethodsMice were subjected to 45 min of myocardial ischemia in vivo followed by 24 h of reperfusion (R). Nebivolol (500 ng/kg), CL 316243 (1 μg/kg), BRL-37344 (1 μg/kg), or vehicle (VEH) was administered at the time of R. Myocardial area-at-risk (AAR) and infarct size (INF)/AAR was measured at 24 h of R. Cardiac tissue and plasma were collected to evaluate eNOS phosphorylation, neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase expression, and nitrite and nitrosothiol levels.ResultsNebivolol (500 ng/kg) reduced INF/AAR by 37% (p < 0.001 vs. VEH) and serum troponin-I levels from 41 ± 4 ng/ml to 25 ± 4 ng/ml (p < 0.05 vs. VEH). CL 316243 and BRL-37344 reduced INF by 39% and 42%, respectively (p < 0.001 vs. VEH). Nebivolol and CL 316243 increased eNOS phosphorylation at Ser-1177 (p < 0.05 vs. VEH) and increased nitrite and total nitrosylated protein levels. Nebivolol and CL 316243 significantly increased myocardial nNOS expression. Nebivolol failed to reduce INF after MI/R in beta(3)-AR (-/-), eNOS(-/-), and in nNOS(-/-) mice.ConclusionsOur results indicate that beta(3)-AR agonists protect against MI/R injury. Furthermore, the cardioprotective effects of beta(3)-AR agonists are mediated by rapid eNOS and nNOS activation and increased NO bioavailability.
Project description:A common dichotomy exists in inhibitor design: should the compounds be designed to block the enzymes of animals in the preclinical studies or to inhibit the human enzyme? We report that a single mutation of Leu-337 in rat neuronal nitric oxide synthase (nNOS) to His makes the enzyme resemble human nNOS more than rat nNOS. We expect that the approach used in this study can unite the dichotomy and speed up the process of inhibitor design and development.
Project description:Nitric oxide synthases (NOS) are modular, calmodulin- (CaM-) dependent, flavoheme enzymes that catalyze oxidation of l-arginine to generate nitric oxide (NO) and citrulline. During catalysis, the FMN subdomain cycles between interaction with an NADPH-FAD subdomain to receive electrons and interaction with an oxygenase domain to deliver electrons to the NOS heme. This process can be described by a three-state, two-equilibrium model for the conformation of the FMN subdomain, in which it exists in two distinct bound states (FMN-shielded) and one common unbound state (FMN-deshielded). We studied how each partner subdomain, the FMN redox state, and CaM binding may regulate the conformational equilibria of the FMN module in rat neuronal NOS (nNOS). We utilized four nNOS protein constructs of different subdomain composition, including the isolated FMN subdomain, and determined changes in the conformational state by measuring the degree of FMN shielding by fluorescence, electron paramagnetic resonance, or stopped-flow spectroscopic techniques. Our results suggest the following: (i) The NADPH-FAD subdomain has a far greater capacity to interact with the FMN subdomain than does the oxygenase domain. (ii) CaM binding has no direct effects on the FMN subdomain. (iii) CaM destabilizes interaction of the FMN subdomain with the NADPH-FAD subdomain but does not measurably increase its interaction with the oxygenase domain. Our results imply that a different set point and CaM regulation exists for either conformational equilibrium of the FMN subdomain. This helps to explain the unique electron transfer and catalytic behaviors of nNOS, relative to other dual-flavin enzymes.
Project description:Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1?A (5-HTR1?A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Project description:Nitric oxide (NO) derived from nitric oxide synthase (NOS) is an important paracrine effector that maintains vascular tone. The release of NO mediated by NOS isozymes under various O(2) conditions critically determines the NO bioavailability in tissues. Because of experimental difficulties, there has been no direct information on how enzymatic NO production and distribution change around arterioles under various oxygen conditions. In this study, we used computational models based on the analysis of biochemical pathways of enzymatic NO synthesis and the availability of NOS isozymes to quantify the NO production by neuronal NOS (NOS1) and endothelial NOS (NOS3). We compared the catalytic activities of NOS1 and NOS3 and their sensitivities to the concentration of substrate O(2). Based on the NO release rates predicted from kinetic models, the geometric distribution of NO sources, and mass balance analysis, we predicted the NO concentration profiles around an arteriole under various O(2) conditions. The results indicated that NOS1-catalyzed NO production was significantly more sensitive to ambient O(2) concentration than that catalyzed by NOS3. Also, the high sensitivity of NOS1 catalytic activity to O(2) was associated with significantly reduced NO production and therefore NO concentrations, upon hypoxia. Moreover, the major source determining the distribution of NO was NOS1, which was abundantly expressed in the nerve fibers and mast cells close to arterioles, rather than NOS3, which was expressed in the endothelium. Finally, the perivascular NO concentration predicted by the models under conditions of normoxia was paradoxically at least an order of magnitude lower than a number of experimental measurements, suggesting a higher abundance of NOS1 or NOS3 and/or the existence of other enzymatic or nonenzymatic sources of NO in the microvasculature.
Project description:Nitric oxide (NO) is an important second messenger molecule for blood pressure homeostasis, as a neurotransmitter, and in the immune defense system. Excessive NO can lead to neurodegeneration and connective tissue damage. Three different isozymes of the enzyme nitric oxide synthase regulate NO production in endothelial (eNOS), neuronal (nNOS), and macrophage (iNOS) cells. Whereas creating a lower level of NO in some cells could be beneficial, it also could be detrimental to the protective effects that NO has on other cells. Therefore, it is essential that therapeutic NOS inhibitors be made that are subtype selective. Previously, we reported a series of nitroarginine-containing dipeptide amides as potent and selective nNOS inhibitors. Here we synthesize peptidomimetic hydroxyethylene isosteres of these dipeptide amides for potential increased bioavailability. None of the compounds is as potent or selective as the dipeptide amides, but they exhibit good inhibition and selectivity. When the terminal amino group was converted to a hydroxyl group, potency and selectivity greatly diminished, supporting the importance of the terminal amino group for binding.
Project description:The nitric oxide synthases (NOS; EC 1.14.13.39) use L-arginine as a substrate to produce nitric oxide (NO) as a by-product in the tissue microenvironment. NOS1 represents the predominant NO-producing enzyme highly enriched in the brain and known to mediate multiple functions, ranging from learning and memory development to maintaining synaptic plasticity and neuronal development, Alzheimer's disease (AD), psychiatric disorders and behavioral deficits. However, accumulating evidence indicate both canonical and non-canonical roles of NOS1-derived NO in several other tissues and chronic diseases. A better understanding of NOS1-derived NO signaling, and identification and characterization of NO-metabolites in non-neuronal tissues could become useful in diagnosis and prognosis of diseases associated with NOS1 expression. Continued investigation on the roles of NOS1, therefore, will synthesize new knowledge and aid in the discovery of small molecules which could be used to titrate the activities of NOS1-derived NO signaling and NO-metabolites. Here, we address the significance of NOS1 and its byproduct NO in modifying pathophysiological events, which could be beneficial in understanding both the disease mechanisms and therapeutics.
Project description:The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50?mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30?mg/kg), or nitric oxide precursor L-arginine (200?mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.
Project description:Astrocytic tumors, including astrocytomas and glioblastomas, are the most common type of primary brain tumors. Treatment for glioblastomas includes radiotherapy, chemotherapy with temozolomide (TMZ) and surgical ablation. Despite certain therapeutic advances, the survival time of patients is no longer than 12-14 months. Cancer cells overexpress the neuronal isoform of nitric oxide synthase (nNOS). In the present study, it was examined whether the nNOS enzyme serves a role in the damage of astrocytoma (U251MG and U138MG) and glioblastoma (U87MG) cells caused by TMZ. First, TMZ (250 µM) triggered an increase in oxidative stress at 2, 48 and 72 h in the U87MG, U251MG and U138MG cell lines, as revealed by 2',7'-dichlorofluorescin-diacetate assay. The drug also reduced cell viability, as measured by MTT assay. U87MG cells presented a more linear decline in cell viability at time-points 2, 48 and 72 h, compared with the U251MG and U138MG cell lines. The peak of oxidative stress occurred at 48 h. To examine the role of NOS enzymes in the cell damage caused by TMZ, N(?)-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI) were used. L-NAME increased the cell damage caused by TMZ while reducing the oxidative stress at 48 h. The preferential nNOS inhibitor 7-NI also improved the TMZ effects. It caused a 12.8% decrease in the viability of TMZ-injured cells. Indeed, 7-NI was more effective than L-NAME in restraining the increase in oxidative stress triggered by TMZ. Silencing nNOS with a synthetic small interfering (si)RNA (siRNAnNOShum_4400) increased by 20% the effects of 250 µM of TMZ on cell viability (P<0.05). Hoechst 33342 nuclear staining confirmed that nNOS knock-down enhanced TMZ injury. In conclusion, our data reveal that nNOS enzymes serve a role in the damage produced by TMZ on astrocytoma and glioblastoma cells. RNA interference with nNOS merits further studies in animal models to disclose its potential use in brain tumor anticancer therapy.
Project description:The purpose of this study is to comprehensively elucidate the role of nitric oxide and nitric oxide synthase isoforms in pulmonary emphysema using cap analysis of gene expression (CAGE) sequencing.