PIK3CA-mutated melanoma cells rely on cooperative signaling through mTORC1/2 for sustained proliferation.
Ontology highlight
ABSTRACT: Malignant conversion of BRAF- or NRAS-mutated melanocytes into melanoma cells can be promoted by PI3'-lipid signaling. However, the mechanism by which PI3'-lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS- or BRAF-mutated melanoma cells that co-express mutationally activated PIK3CA, we explored the contribution of PI3'-lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an ?-selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single-agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1-mediated effects on ribosomal protein S6 and 4E-BP1 phosphorylation in an AKT-dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRASQ61H /PIK3CAH1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA-mutated melanoma proliferation.
SUBMITTER: Silva JM
PROVIDER: S-EPMC5411292 | biostudies-literature | 2017 May
REPOSITORIES: biostudies-literature
ACCESS DATA