Unknown

Dataset Information

0

A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.


ABSTRACT: Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency. Here, we report on a novel homozygous CISD2 mutation (c.215A?>?G; p.Asn72Ser) in a Moroccan patient with an overlapping phenotype suggesting that Wolfram syndrome type 1 and type 2 form a continuous clinical spectrum with genetic heterogeneity. The present study provides strong evidence that this particular CISD2 mutation disturbs cellular Ca2+ homeostasis with enhanced Ca2+ flux from the ER to mitochondria and cytosolic Ca2+ abnormalities in patient-derived fibroblasts. This Ca2+ dysregulation was associated with increased ER-mitochondria contact, a swollen ER lumen and a hyperfused mitochondrial network in the absence of overt ER stress. Although there was no marked alteration in mitochondrial bioenergetics under basal conditions, culture of patient-derived fibroblasts in glucose-free galactose medium revealed a respiratory chain defect in complexes I and II, and a trend towards decreased ATP levels. Our results provide important novel insight into the potential disease mechanisms underlying the neurodegenerative consequences of CISD2 mutations and the subsequent development of multisystemic disease.

SUBMITTER: Rouzier C 

PROVIDER: S-EPMC5411739 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.

Rouzier Cécile C   Moore David D   Delorme Cécile C   Lacas-Gervais Sandra S   Ait-El-Mkadem Samira S   Fragaki Konstantina K   Burté Florence F   Serre Valérie V   Bannwarth Sylvie S   Chaussenot Annabelle A   Catala Martin M   Yu-Wai-Man Patrick P   Paquis-Flucklinger Véronique V  

Human molecular genetics 20170501 9


Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and d  ...[more]

Similar Datasets

| S-EPMC3386223 | biostudies-literature
| S-EPMC5729406 | biostudies-literature
| S-EPMC3779451 | biostudies-literature
| S-EPMC380968 | biostudies-literature
| S-EPMC9758940 | biostudies-literature
| S-EPMC7084677 | biostudies-literature
| S-EPMC6763289 | biostudies-literature
| S-EPMC4121299 | biostudies-literature
| S-EPMC6156612 | biostudies-literature
| S-EPMC3251553 | biostudies-literature