Unknown

Dataset Information

0

Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition.


ABSTRACT: Purpose: Using gene-disrupted allogeneic T cells as universal effector cells provides an alternative and potentially improves current chimeric antigen receptor (CAR) T-cell therapy against cancers and infectious diseases.Experimental Design: The CRISPR/Cas9 system has recently emerged as a simple and efficient way for multiplex genome engineering. By combining lentiviral delivery of CAR and electro-transfer of Cas9 mRNA and gRNAs targeting endogenous TCR, ?-2 microglobulin (B2M) and PD1 simultaneously, to generate gene-disrupted allogeneic CAR T cells deficient of TCR, HLA class I molecule and PD1.Results: The CRISPR gene-edited CAR T cells showed potent antitumor activities, both in vitro and in animal models and were as potent as non-gene-edited CAR T cells. In addition, the TCR and HLA class I double deficient T cells had reduced alloreactivity and did not cause graft-versus-host disease. Finally, simultaneous triple genome editing by adding the disruption of PD1 led to enhanced in vivo antitumor activity of the gene-disrupted CAR T cells.Conclusions: Gene-disrupted allogeneic CAR and TCR T cells could provide an alternative as a universal donor to autologous T cells, which carry difficulties and high production costs. Gene-disrupted CAR and TCR T cells with disabled checkpoint molecules may be potent effector cells against cancers and infectious diseases. Clin Cancer Res; 23(9); 2255-66. ©2016 AACR.

SUBMITTER: Ren J 

PROVIDER: S-EPMC5413401 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition.

Ren Jiangtao J   Liu Xiaojun X   Fang Chongyun C   Jiang Shuguang S   June Carl H CH   Zhao Yangbing Y  

Clinical cancer research : an official journal of the American Association for Cancer Research 20161104 9


<b>Purpose:</b> Using gene-disrupted allogeneic T cells as universal effector cells provides an alternative and potentially improves current chimeric antigen receptor (CAR) T-cell therapy against cancers and infectious diseases.<b>Experimental Design:</b> The CRISPR/Cas9 system has recently emerged as a simple and efficient way for multiplex genome engineering. By combining lentiviral delivery of CAR and electro-transfer of Cas9 mRNA and gRNAs targeting endogenous TCR, β-2 microglobulin (B2M) an  ...[more]

Similar Datasets

| S-EPMC6257951 | biostudies-literature
| S-EPMC4066482 | biostudies-literature
| S-EPMC7438733 | biostudies-literature
| S-EPMC9247096 | biostudies-literature
| S-EPMC6679731 | biostudies-literature
| S-EPMC9043938 | biostudies-literature
| S-EPMC5980162 | biostudies-literature
| S-EPMC6027590 | biostudies-literature
| S-EPMC6180501 | biostudies-literature
| S-EPMC6376657 | biostudies-literature