Unknown

Dataset Information

0

Identifying systematic heterogeneity patterns in genetic association meta-analysis studies.


ABSTRACT: Progress in mapping loci associated with common complex diseases or quantitative inherited traits has been expedited by large-scale meta-analyses combining information across multiple studies, assembled through collaborative networks of researchers. Participating studies will usually have been independently designed and implemented in unique settings that are potential sources of phenotype, ancestry or other variability that could introduce between-study heterogeneity into a meta-analysis. Heterogeneity tests based on individual genetic variants (e.g. Q, I2) are not suited to identifying locus-specific from more systematic multi-locus or genome-wide patterns of heterogeneity. We have developed and evaluated an aggregate heterogeneity M statistic that combines between-study heterogeneity information across multiple genetic variants, to reveal systematic patterns of heterogeneity that elude conventional single variant analysis. Application to a GWAS meta-analysis of coronary disease with 48 contributing studies uncovered substantial systematic between-study heterogeneity, which could be partly explained by age-of-disease onset, family-history of disease and ancestry. Future meta-analyses of diseases and traits with multiple known genetic associations can use this approach to identify outlier studies and thereby optimize power to detect novel genetic associations.

SUBMITTER: Magosi LE 

PROVIDER: S-EPMC5432194 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identifying systematic heterogeneity patterns in genetic association meta-analysis studies.

Magosi Lerato E LE   Goel Anuj A   Hopewell Jemma C JC   Farrall Martin M  

PLoS genetics 20170501 5


Progress in mapping loci associated with common complex diseases or quantitative inherited traits has been expedited by large-scale meta-analyses combining information across multiple studies, assembled through collaborative networks of researchers. Participating studies will usually have been independently designed and implemented in unique settings that are potential sources of phenotype, ancestry or other variability that could introduce between-study heterogeneity into a meta-analysis. Heter  ...[more]

Similar Datasets

| S-EPMC3476718 | biostudies-literature
| S-EPMC2731535 | biostudies-literature
| S-EPMC8739292 | biostudies-literature
2022-11-03 | GSE198904 | GEO
| S-EPMC3582382 | biostudies-literature
| S-EPMC7577775 | biostudies-literature
2011-02-03 | E-GEOD-20186 | biostudies-arrayexpress
2011-02-03 | GSE20186 | GEO
| S-EPMC5008361 | biostudies-literature
| S-EPMC4509672 | biostudies-literature