Unknown

Dataset Information

0

Reactivity in the human retinal microvasculature measured during acute gas breathing provocations.


ABSTRACT: Although changes in vessel diameter following gas perturbation have been documented in retinal arterioles and venules, these responses have yet to be quantified in the smallest vessels of the human retina. Here, using in vivo adaptive optics, we imaged 3-25?µm diameter vessels of the human inner retinal circulation and monitored the effects of altered gas-breathing conditions. During isocapnic hyperoxia, definite constrictions were seen in 51% of vessel segments (mean?±?SD for pre-capillary arterioles -9.5?±?3.0%; capillaries -11.8?±?3.3%; post-capillary venules -6.3?±?2.8%); these are comparable with responses previously reported in larger vessels. During isoxic hypercapnia, definite dilations were seen in 47% of vessel segments (mean?±?SD for pre-capillary arterioles +9.8?±?1.5%; capillaries +13.7?±?3.8%; post-capillary venules +7.5?±?4.2%); these are proportionally greater than responses previously reported in larger vessels. The magnitude of these proportional changes implies that the capillary beds themselves play an important role in the retinal response to changes in carbon dioxide levels. Interestingly, the distribution of microvascular responses shown here differs from our previously reported responses to flicker stimulation, suggesting differences in the way blood supply is coordinated following gas perturbation and altered neural activity.

SUBMITTER: Duan A 

PROVIDER: S-EPMC5437020 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reactivity in the human retinal microvasculature measured during acute gas breathing provocations.

Duan Angelina A   Bedggood Phillip A PA   Metha Andrew B AB   Bui Bang V BV  

Scientific reports 20170518 1


Although changes in vessel diameter following gas perturbation have been documented in retinal arterioles and venules, these responses have yet to be quantified in the smallest vessels of the human retina. Here, using in vivo adaptive optics, we imaged 3-25 µm diameter vessels of the human inner retinal circulation and monitored the effects of altered gas-breathing conditions. During isocapnic hyperoxia, definite constrictions were seen in 51% of vessel segments (mean ± SD for pre-capillary arte  ...[more]

Similar Datasets

| S-EPMC5460055 | biostudies-literature
| S-EPMC3534915 | biostudies-literature
| S-EPMC4126097 | biostudies-literature
| S-EPMC6497255 | biostudies-literature
| S-EPMC4456093 | biostudies-literature
| S-EPMC4979959 | biostudies-literature
| S-EPMC4640259 | biostudies-other
| S-EPMC10751341 | biostudies-literature
| S-EPMC10050819 | biostudies-literature
2012-07-07 | E-MTAB-1179 | biostudies-arrayexpress