Unknown

Dataset Information

0

Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals


ABSTRACT: The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (?K) than Ti alloy.

SUBMITTER: Okazaki Y 

PROVIDER: S-EPMC5449063 | biostudies-literature | 2012 Dec

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5459084 | biostudies-other
| S-EPMC5344579 | biostudies-other
| S-EPMC8892355 | biostudies-literature
| S-EPMC8449453 | biostudies-literature
| S-EPMC5459140 | biostudies-other
| S-EPMC10095606 | biostudies-literature
| S-EPMC5506980 | biostudies-other
| S-EPMC9184622 | biostudies-literature
| S-EPMC5452735 | biostudies-other
| S-EPMC7357576 | biostudies-literature