Unknown

Dataset Information

0

Thermo-Mechanical Fatigue Crack Growth of RR1000.


ABSTRACT: Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

SUBMITTER: Pretty CJ 

PROVIDER: S-EPMC5344579 | biostudies-other | 2017 Jan

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC5449063 | biostudies-literature
| S-EPMC8892355 | biostudies-literature
| S-EPMC4901250 | biostudies-other
| S-EPMC5459140 | biostudies-other
| S-EPMC5452797 | biostudies-other
| S-EPMC10095606 | biostudies-literature
| S-EPMC5459084 | biostudies-other
| S-EPMC5506980 | biostudies-other
| S-EPMC9184622 | biostudies-literature
| S-EPMC5452735 | biostudies-other