Project description:PurposeThe majority of patients with autosomal dominant optic atrophy (DOA) harbour pathogenic OPA1 mutations. Although DOA is characterised by the preferential loss of retinal ganglion cells (RGCs), about 20% of patients with OPA1 mutations will develop a more severe disease variant (DOA+), with additional neuromuscular features. In this prospective, observational case series, optical coherence tomography (OCT) was used to define the pattern of retinal nerve fibre layer (RNFL) loss in patients with both the pure and syndromal forms of DOA.MethodsForty patients with a molecular diagnosis of DOA due to OPA1 mutations were prospectively recruited from our neuro-ophthalmology clinic: 26 patients with isolated optic atrophy and 14 patients manifesting DOA+ features. Peripapillary RNFL thickness was measured with the Fast RNFL (3.4) acquisition protocol on a Stratus OCT.ResultsThere was a statistically significant reduction in average RNFL thickness in the OPA1 group compared with normal controls (P<0.0001). The percentage decrease was greatest in the temporal quadrant (59.0%), followed by the inferior (49.6%), superior (41.8%), and nasal (25.9%) quadrants. Patients with DOA+ features had worse visual outcomes compared with patients with pure DOA. Except in the temporal quadrant, RNFL measurements were significantly thinner for the DOA+ group. There was an inverse correlation between average RNFL thickness and logarithm of the minimum angle of resolution (LogMAR) visual acuity (P<0.0001).ConclusionsRGC loss in DOA is characterised by severe involvement of the temporal papillomacular bundle, with relative sparing of the nasal fibres. RNFL thinning is more pronounced in patients with DOA+ phenotypes.
Project description:Dominant optic atrophy (DOA) is a rare progressive and irreversible blinding disease which is one of the most frequent forms of hereditary optic neuropathy. DOA is mainly caused by dominant mutation in the OPA1 gene encoding a large mitochondrial GTPase with crucial roles in membrane dynamics and cell survival. Hereditary optic neuropathies are commonly characterized by the degeneration of retinal ganglion cells, leading to the optic nerve atrophy and the progressive loss of visual acuity. Up to now, despite increasing advances in the understanding of the pathological mechanisms, DOA remains intractable. Here, we tested the efficiency of gene therapy on a genetically-modified mouse model reproducing DOA vision loss. We performed intravitreal injections of an Adeno-Associated Virus carrying the human OPA1 cDNA under the control of the cytomegalovirus promotor. Our results provide the first evidence that gene therapy is efficient on a mouse model of DOA as the wild-type OPA1 expression is able to alleviate the OPA1-induced retinal ganglion cell degeneration, the hallmark of the disease. These results displayed encouraging effects of gene therapy for Dominant Optic Atrophy, fostering future investigations aiming at clinical trials in patients.
Project description:BackgroundObjective measures of disease progression that can be used as endpoints in clinical trials of MSA are necessary. We studied retinal thickness in patients with MSA and assessed changes over time to determine its usefulness as an imaging biomarker of disease progression.MethodsThis was a cross-sectional study including 24 patients with MSA, 20 with PD, and 35 controls, followed by a longitudinal study of 13 MSA patients. Patients were evaluated with high-definition optical coherence tomography and the Unified Multiple System Atrophy Rating Scale. Evaluations were performed at baseline and at consecutive follow-up visits for up to 26 months.ResultsMSA subjects had normal visual acuity and color discrimination. Compared to controls, retinal nerve fiber layer (P = 0.008 and P = 0.001) and ganglion cell complex (P = 0.013 and P = 0.001) thicknesses were reduced in MSA and PD. No significant differences between MSA and PD were found. Over time, in patients with MSA, there was a significant reduction of the retinal nerve fiber layer and ganglion cell complex thicknesses, with estimated annual average losses of 3.7 and 1.8 μm, respectively.ConclusionsVisually asymptomatic MSA patients exhibit progressive reductions in the thickness of the retinal nerve fiber layer and, to a lesser extent, in the macular ganglion cell complex, which can be quantified by high-definition optical coherence tomography. Specific patterns of retinal nerve fiber damage could be a useful imaging biomarker of disease progression in future clinical trials.
Project description:ObjectiveMelanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer disease (AD). We investigated mRGCs in AD, hypothesizing that they contribute to circadian dysfunction.MethodsWe assessed retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT) in 21 mild-moderate AD patients, and in a subgroup of 16 we evaluated rest-activity circadian rhythm by actigraphy. We studied postmortem mRGCs by immunohistochemistry in retinas, and axons in optic nerve cross-sections of 14 neuropathologically confirmed AD patients. We coimmunostained for retinal amyloid β (Aβ) deposition and melanopsin to locate mRGCs. All AD cohorts were compared with age-matched controls.ResultsWe demonstrated an age-related optic neuropathy in AD by OCT, with a significant reduction of RNFL thickness (p = 0.038), more evident in the superior quadrant (p = 0.006). Axonal loss was confirmed in postmortem AD optic nerves. Abnormal circadian function characterized only a subgroup of AD patients. Sleep efficiency was significantly reduced in AD patients (p = 0.001). We also found a significant loss of mRGCs in postmortem AD retinal specimens (p = 0.003) across all ages and abnormal mRGC dendritic morphology and size (p = 0.003). In flat-mounted AD retinas, Aβ accumulation was remarkably evident inside and around mRGCs.InterpretationWe show variable degrees of rest-activity circadian dysfunction in AD patients. We also demonstrate age-related loss of optic nerve axons and specifically mRGC loss and pathology in postmortem AD retinal specimens, associated with Aβ deposition. These results all support the concept that mRGC degeneration is a contributor to circadian rhythm dysfunction in AD.
Project description:It is often said that substantial retinal ganglion cells are lost before glaucomatous damage is detected by standard automated perimetry. There are 4 key articles referenced to support this belief. To test the hypothesis that the 4 key articles are incorrectly cited, the publications in the first 6 months of 2019 that reference 1 or more of these 4 articles were examined. In particular, the degree to which the quotes from these 2019 publications accurately reflected the evidence in the 4 key articles was assessed. These quotes are inadequately supported by the data, and in some cases even by the conclusions found in the abstracts of the key articles. This is despite several review articles that have questioned the evidence in these key articles. Further, a case can be made that the evidence in the key articles better supports the opposite conclusion. That is, the data suggest that sensitivity loss can be seen on standard automated perimetry before retinal ganglion cells are missing.
Project description:Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.
Project description:Diabetes produces several changes in the body triggered by high glycemia. Some of these changes include altered metabolism, structural changes in blood vessels and chronic inflammation. The eye and particularly the retinal ganglion cells (RGCs) are not spared, and the changes eventually lead to cell loss and visual function impairment. Understanding the mechanisms resulting in RGC damage and loss from diabetic retinopathy is essential to find an effective treatment. This review focuses mainly on the signaling pathways and molecules involved in RGC loss and the potential therapeutic approaches for the prevention of this cell death. Throughout the manuscript it became evident that multiple factors of different kind are responsible for RGC damage. This shows that new therapeutic agents targeting several factors at the same time are needed. Alpha-1 antitrypsin as an anti-inflammatory agent may become a suitable option for the treatment of RGC loss because of its beneficial interaction with several signaling pathways involved in RGC injury and inflammation. In conclusion, alpha-1 antitrypsin may become a potential therapeutic agent for the treatment of RGC loss and processes behind diabetic retinopathy.
Project description:PurposeTo determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve.MethodsExperimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones.ResultsControl eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected).ConclusionsThere was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains.
Project description:Progressive retinal ganglion cell (RGC) loss is the pathological hallmark of autosomal dominant optic atrophy (DOA) caused by pathogenic OPA1 mutations. The aim of this study was to conduct an in-depth psychophysical study of the visual losses in DOA and to infer any selective vulnerability of visual pathways subserved by different RGC subtypes.We recruited 25 patients carrying pathogenic OPA1 mutations and age-matched healthy individuals. Spatial contrast sensitivity functions (SCSFs) and chromatic contrast sensitivity were quantified, the latter using the Cambridge Colour Test. In 11 patients, long (L) and short (S) wavelength-sensitive cone temporal acuities were measured as a function of target illuminance, and L-cone temporal contrast sensitivity (TCSF) as a function of temporal frequency.Spatial contrast sensitivity functions were abnormal, with the loss of sensitivity increasing with spatial frequency. Further, the highest L-cone temporal acuity fell on average by 10 Hz and the TCSFs by 0.66 log10 unit. Chromatic thresholds along the protan, deutan, and tritan axes were 8, 9, and 14 times higher than normal, respectively, with losses increasing with age and S-cone temporal acuity showing the most significant age-related decline.Losses of midget parvocellular, parasol magnocellular, and bistratified koniocellular RGCs could account for the losses of high spatial frequency sensitivity and protan and deutan sensitivities, high temporal frequency sensitivity, and S-cone temporal and tritan sensitivities, respectively. The S-cone-related losses showed a significant deterioration with increasing patient age and could therefore prove useful biomarkers of disease progression in DOA.
Project description:To investigate the reliability of different methods of quantifying retinal ganglion cells (RGCs) in rat retinal sections and wholemounts from eyes with either intact optic nerves or those axotomised after optic nerve crush (ONC). Adult rats received a unilateral ONC and after 21 days the numbers of Brn3a(+), βIII-tubulin(+) and Islet-1(+) RGCs were quantified in either retinal radial sections or wholemounts in which FluoroGold (FG) was injected 48 h before harvesting. Phenotypic antibody markers were used to distinguish RGCs from astrocytes, macrophages/microglia and amacrine cells. In wholemounted retinae, counts of FG(+) and Brn3a(+) RGCs were of similar magnitude in eyes with intact optic nerves and were similarly reduced after ONC. Larger differences in RGC number were detected between intact and ONC groups when images were taken closer to the optic nerve head. In radial sections, Brn3a did not stain astrocytes, macrophages/microglia or amacrine cells, whereas βIII-tubulin and Islet-1 did localize to amacrine cells as well as RGCs. The numbers of βIII-tubulin(+) RGCs was greater than Brn3a+ RGCs, both in retinae from eyes with intact optic nerves and eyes 21 days after ONC. Islet-1 staining also overestimated the number of RGCs compared to Brn3a, but only after ONC. Estimates of RGC loss were similar in Brn3a-stained radial retinal sections compared to both Brn3a-stained wholemounts and retinal wholemounts in which RGCs were backfilled with FG, with sections having the added advantage of reducing experimental animal usage.