ABSTRACT: Given the characteristic atherogenic dyslipidemia of south Indian population and crucial role of APOA1, APOC3, APOA4 and APOA5 genes clustered in 11q23.3 chromosomal region in regulating lipoprotein metabolism and cholesterol homeostasis, a large number of recently identified variants are to be explored for their role in regulating the serum lipid parameters among south Indians.Using fluidigm SNP genotyping platform, a prioritized set of 96 SNPs of the 11q23.3 chromosomal region were genotyped on 516 individuals from Hyderabad, India, and its vicinity and aged >45 years.The linear regression analysis of the individual lipid traits viz., TC, LDLC, HDLC, VLDL and TG with each of the 78 SNPs that confirm to HWE and with minor allele frequency > 1%, suggests 23 of those to be significantly associated (p ? 0.05) with at least one of these quantitative traits. Most importantly, the variant rs632153 is involved in elevating TC, LDLC, TG and VLDLs and probably playing a crucial role in the manifestation of dyslipidemia. Additionally, another three SNPs rs633389, rs2187126 and rs1263163 are found risk conferring to dyslipidemia by elevating LDLC and TC levels in the present population. Further, the ROC (receiver operating curve) analysis for the risk scores and dyslipidemia status yielded a significant area under curve (AUC) = 0.675, suggesting high discriminative power of the risk variants towards the condition. The interaction analysis suggests rs10488699-rs2187126 pair of the BUD13 gene to confer significant risk (Interaction odds ratio = 14.38, P = 7.17 × 105) towards dyslipidemia by elevating the TC levels (? = 37.13, p = 6.614 × 105). On the other hand, the interaction between variants of APOA1 gene and BUD13 and/or ZPR1 regulatory genes at this region are associated with elevated TG and VLDL.The variants at 11q23.3 chromosomal region seem to determine the quantitative lipid traits and in turn dyslipidemia in the population of Hyderabad. Particularly, the variants rs632153, rs633389, rs2187126 and rs1263163 might be risk conferring to dyslipidemia by elevating LDLC and TC levels, while the variants of APOC3 and APOA1 genes might be the genetic determinants of elevated triglycerides in the present population.