Unknown

Dataset Information

0

Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles.


ABSTRACT: Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles can be achieved. After centrifugal purification to remove excess non-encapsulated silica nanoparticles, SAXS, DCP, and TGA analysis indicates encapsulation of up to hundreds of silica nanoparticles per vesicle. In the present study, the thermally triggered release of these encapsulated silica nanoparticles is examined by cooling to 0 °C for 30 min, which causes in situ vesicle dissociation. Transmission electron microscopy studies confirm the change in diblock copolymer morphology and also enable direct visualization of the released silica nanoparticles. Time-resolved small-angle X-ray scattering is used to quantify the extent of silica release over time. For an initial silica concentration of 5% w/w, cooling induces a vesicle-to-sphere transition with subsequent nanoparticle release. For higher silica concentrations (20 or 30% w/w) cooling only leads to perforation of the vesicle membranes, but silica nanoparticles are nevertheless released through the pores. For vesicles prepared in the presence of 30% w/w silica, the purified silica-loaded vesicles were cooled to 0 °C for 30 min, and SAXS patterns were collected every 15 s. A new SAXS model has been developed to determine both the mean volume fraction of encapsulated silica within the vesicles and the scattering length density. Satisfactory data fits to the experimental SAXS patterns were obtained using this model.

SUBMITTER: Mable CJ 

PROVIDER: S-EPMC5472368 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles.

Mable Charlotte J CJ   Derry Matthew J MJ   Thompson Kate L KL   Fielding Lee A LA   Mykhaylyk Oleksandr O OO   Armes Steven P SP  

Macromolecules 20170526 11


Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles can be achieved. After centrifugal purification to remove excess non-encapsulated silica nanoparticles, S  ...[more]

Similar Datasets

| S-EPMC4697924 | biostudies-literature
| S-EPMC5465507 | biostudies-literature
| S-EPMC5362163 | biostudies-literature
| S-EPMC5613660 | biostudies-literature
| S-EPMC8152590 | biostudies-literature
| S-EPMC4046796 | biostudies-other
| S-EPMC3494880 | biostudies-literature
| S-EPMC4973472 | biostudies-literature
| S-EPMC8124141 | biostudies-literature
| S-EPMC2996692 | biostudies-literature