Project description:The Vision and Change in Undergraduate Biology Education reports cite the critical role of professional societies in undergraduate life science education and, since 2008, have called for the increased involvement of professional societies in support of undergraduate education. Our study explored the level of support being provided by societies for undergraduate education and documented changes in support during the Vision and Change era. Society representatives responded to a survey on programs, awards, meetings, membership, teaching resources, publications, staffing, finances, evaluation, and collaborations that address undergraduate faculty and students. A longitudinal comparison group of societies responded to surveys in both 2008 and 2014. Results indicate that life science professional societies are extensively engaged in undergraduate education in their fields, setting standards for their discipline, providing vetted education resources, engaging students in both research and education, and enhancing professional development and recognition/status for educators. Societies are devoting funding and staff to these efforts and engaging volunteer leadership. Longitudinal comparison group responses indicate there have been significant and quantifiable expansions of undergraduate efforts in many areas since 2008. These indicators can serve as a baseline for defining, aligning, and measuring how professional societies can promote sustainable, evidence-based support of undergraduate education initiatives.
Project description:An expanded investment in interdisciplinary research has prompted greater demands to integrate knowledge across disciplinary boundaries. Vision and Change similarly made interdisciplinary expectations a key competency for undergraduate biology majors; however, we are not yet synchronized on the meaning of interdisciplinarity, making this benchmark difficult to meet and assess. Here, we discuss aspects of interdisciplinarity through a historical lens and address various institutional barriers to interdisciplinary work. In an effort to forge a unified path forward, we provide a working definition of interdisciplinary science derived from both the perspectives of science faculty members and scientific organizations. We leveraged the existing literature and our proposed definition to build a conceptual model for an Interdisciplinary Science Framework to be used as a guide for developing and assessing interdisciplinary efforts in undergraduate science education. We believe this will provide a foundation from which the community can develop learning outcomes, activities, and measurements to help students meet the Vision and Change core competency of "tapping into the interdisciplinary nature of science."
Project description:There is a clear demand for quantitative literacy in the life sciences, necessitating competent instructors in higher education. However, not all instructors are versed in data science skills or research-based teaching practices. We surveyed biological and environmental science instructors (n = 106) about the teaching of data science in higher education, identifying instructor needs and illuminating barriers to instruction. Our results indicate that instructors use, teach, and view data management, analysis, and visualization as important data science skills. Coding, modeling, and reproducibility were less valued by the instructors, although this differed according to institution type and career stage. The greatest barriers were instructor and student background and space in the curriculum. The instructors were most interested in training on how to teach coding and data analysis. Our study provides an important window into how data science is taught in higher education biology programs and how we can best move forward to empower instructors across disciplines.
Project description:Undergraduate researchers at research universities are often mentored by graduate students or postdoctoral researchers (referred to collectively as "postgraduates") and faculty, creating a mentoring triad structure. Triads differ based on whether the undergraduate, postgraduate, and faculty member interact with one another about the undergraduate's research. Using a social capital theory framework, we hypothesized that different triad structures provide undergraduates with varying resources (e.g., information, advice, psychosocial support) from the postgraduates and/or faculty, which would affect the undergraduates' research outcomes. To test this, we collected data from a national sample of undergraduate life science researchers about their mentoring triad structure and a range of outcomes associated with research experiences, such as perceived gains in their abilities to think and work like scientists, science identity, and intentions to enroll in a PhD program. Undergraduates mentored by postgraduates alone reported positive outcomes, indicating that postgraduates can be effective mentors. However, undergraduates who interacted directly with faculty realized greater outcomes, suggesting that faculty interaction is important for undergraduates to realize the full benefits of research. The "closed triad," in which undergraduates, postgraduates, and faculty all interact directly, appeared to be uniquely beneficial; these undergraduates reported the highest gains in thinking and working like a scientist.
Project description:AimsFor more than two decades genomic education of the public has been a significant challenge. As genomic information becomes integrated into daily life and routine clinical care, the need for public education is even more critical. We conducted a pilot study to learn how genomic researchers and ethical, legal, and social implications advisors who were affiliated with large-scale genomic variation studies have approached the issue of educating the public about genomics.Methods/resultsSemi-structured telephone interviews were conducted with researchers and advisors associated with the SNP/HAPMAP studies and the Cancer Genome Atlas Study. Respondents described approach(es) associated with educating the public about their study. Interviews were audio-recorded, transcribed, coded, and analyzed by team review. Although few respondents described formal educational efforts, most provided recommendations for what should/could be done, emphasizing the need for an overarching entity(s) to take responsibility to lead the effort to educate the public. Opposing views were described related to: who this should be; the overall goal of the educational effort; and the educational approach. Four thematic areas emerged: What is the rationale for educating the public about genomics?; Who is the audience?; Who should be responsible for this effort?; and What should the content be? Policy issues associated with these themes included the need to agree on philosophical framework(s) to guide the rationale, content, and target audiences for education programs; coordinate previous/ongoing educational efforts; and develop a centralized knowledge base. Suggestions for next steps are presented.ConclusionA complex interplay of philosophical, professional, and cultural issues can create impediments to genomic education of the public. Many challenges, however, can be addressed by agreement on a guiding philosophical framework(s) and identification of a responsible entity(s) to provide leadership for developing/overseeing an appropriate infrastructure to support the coordination/integration/sharing and evaluation of educational efforts, benefiting consumers and professionals.
Project description:While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy.
Project description:IntroductionOne of the goals of evidence-based medical education is to familiarize future health care practitioners with the scientific method so they can interpret scholarly literature and communicate appropriately with patients. However, many students lack the skills necessary to conduct research themselves. We describe a preclinical elective course designed to equip students with these skills through workshops, mentorship, and research experience.MethodsThrough an application process, we selected first-year medical (M1) students who expressed interest in conducting basic, translational, or clinical research. Throughout the yearlong curriculum, students attended a series of 10 1-hour workshops to learn the skills necessary to engage in research. Additionally, each student was paired with a peer mentor. As their final project, students completed a specific aims page based on their projected research study.ResultsOver the course of 3 years, 96% of students secured a research position for the summer following M1, and 36% secured positions at external institutions with nationally competitive funding, compared to 10% of their peers who did not participate in the elective. Of students, 80% indicated that this elective helped them find and secure these research positions, and 75% of students reported that they learned valuable skills not taught in their medical curriculum.DiscussionParticipation in a preclinical research elective can provide immediate value in the form of research skills with the prospect of stimulating a lifelong interest in scientific inquiry. Our curriculum was delivered in a medical school setting, however it is applicable to any health care professional school.
Project description:The BioHealth Capital Region (Maryland, Virginia, and Washington, DC; BHCR) is flush with colleges and universities training students in science, technology, engineering, and mathematics disciplines and has one of the most highly educated workforces in the United States. However, current educational approaches and business recruitment tactics are not drawing sufficient talent to sustain the bioscience workforce pipeline. Surveys conducted by the Mid-Atlantic Biology Research and Career Network identified a disconnect between stakeholders who are key to educating, training, and hiring college and university graduates, resulting in several impediments to workforce development in the BHCR: 1) students are underinformed or unaware of bioscience opportunities before entering college and remain so at graduation; 2) students are not job ready at the time of graduation; 3) students are mentored to pursue education beyond what is needed and are therefore overqualified (by degree) for most of the available jobs in the region; 4) undergraduate programs generally lack any focus on workforce development; and 5) few industry-academic partnerships with undergraduate institutions exist in the region. The reality is that these issues are neither surprising nor restricted to the BHCR. Recommendations are presented to facilitate improvement in the preparation of graduates for today's bioscience industries throughout the United States.
Project description:Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.
Project description:Open access, open data, open source and other open scholarship practices are growing in popularity and necessity. However, widespread adoption of these practices has not yet been achieved. One reason is that researchers are uncertain about how sharing their work will affect their careers. We review literature demonstrating that open research is associated with increases in citations, media attention, potential collaborators, job opportunities and funding opportunities. These findings are evidence that open research practices bring significant benefits to researchers relative to more traditional closed practices.