Unknown

Dataset Information

0

Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children.


ABSTRACT: Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas exhibited enhanced functional connectivity in blind children and that this reorganization was spatially associated with the transcription levels of specific members of the cAMP Response Element Binding protein gene family. Using systems-level analyses, this study advances our understanding of human neuroplasticity and its genetic underpinnings following sensory deprivation.

SUBMITTER: Ortiz-Teran L 

PROVIDER: S-EPMC5495230 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children.

Ortiz-Terán Laura L   Diez Ibai I   Ortiz Tomás T   Perez David L DL   Aragón Jose Ignacio JI   Costumero Victor V   Pascual-Leone Alvaro A   El Fakhri Georges G   Sepulcre Jorge J  

Proceedings of the National Academy of Sciences of the United States of America 20170612 26


Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted  ...[more]

Similar Datasets

| S-EPMC7423688 | biostudies-literature
| S-EPMC4937754 | biostudies-literature
| S-EPMC6984812 | biostudies-literature
| S-EPMC3017102 | biostudies-literature
| S-EPMC8696273 | biostudies-literature
| S-EPMC6004823 | biostudies-literature
| S-EPMC3008317 | biostudies-literature
| S-EPMC5218407 | biostudies-literature
| S-EPMC5871574 | biostudies-literature
| S-EPMC4598717 | biostudies-literature